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Executive Summary 
The Eastern Nile Basin is characterized by high variability in rainfall, and climate change is expected to 

increase the uncertainty, which will impact the water resources availability especially with the increasing 

demand. This study was designed to discuss the variation of rainfall over the Eastern Nile Basin, aiming 

to statistically and spatially analyzing historical rainfall data to assess the rainfall trends, considering the 

main subbasins of the Eastern Nile Basin; Blue Nile, Baro-Akobo-Sobat, Tekeze-Setit-Atbara, and the Main 

Nile. 

To overcome the challenge of the scarcity of the rainfall ground observations, rainfall data was acquired 

from five satellite-based products; namely, CHIRPS, ARC2, PERSIANN-CDR, TAMSAT, as well as GPCC. 

Those products were selected according to their performance, coverage, and resolution. The historical 

rainfall analysis consisted of number of steps, including the data quality check and correction, spatio-

temporal analysis, statistical analysis and performance testing, and rainfall trends analysis in different 

time scales. The analysis was conducted using a wide range of techniques, tools, and software depending 

on the type of the analysis and the required outcome. The main four subbasins of the eastern Nile basin 

were considered, with dividing the Main Nile into upper and lower subbasins as they have totally 

different rainfall patterns. CHIRPS was taken as a reference for comparison as it is blended with stations 

data and showed the best performance compared to ground observations over East Africa. 

The basin was found to receive amounts of annual rainfall ranging between 0 mm rainfall at the northern 

part of the basin to around 1500 mm at its south-eastern area (the highlands of Ethiopia and parts of 

South Sudan), with differences in the spatial and temporal variations among the different rainfall 

products. The results of the study indicated that CHIRPS followed by TAMSAT demonstrated the best 

performance over the Blue Nile, Baro-Akobo-Sobat, Tekeze-Setit-Atbara, and the Upper Main Nile 

compared to other products. While in the Lower Main Nile, CHIRPS and GPCC can be considered the best, 

however, high uncertainty is observed. Results also showed that the Eastern Nile Basin have shown an 

increasing rainfall trend with different rates over the period 1990 – 2020. 

The results of this study provide crucial information for water resources management, which directly 

have impacts on human socio-economic life, and environment. It can be used by different stakeholders, 

researchers, and policy makers to inform decision-making process. 
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Introduction 

1.1 General Overview 

Climate is one of the key components in the earth's system. Many variables such as temperature, rainfall, 

atmospheric pressure, and humidity constitute weather and climate. Climate is usually defined as the 

average weather (Panda, 2019). In a broad sense, it is the statistical description in terms of the mean and 

variability of relevant quantities over a period ranging from months to thousands or millions of years. 

The analysis of long-term changes in climatic variables is a fundamental task in studies on climate change 

detection. The climate trend is the general movement of a series over an extended period, or it is the 

change in the dependent variable over a long period. Generally, it is determined by the relationship 

between the two variables and their temporal resolution, using spatial and statistical methods (Webber 

and Hawkins, 1980). Rainfall trends are considered a key factor in climate, which plays a crucial role in 

the water cycle that influences the availability of fresh water.  

Focusing on the Eastern Nile Basin, the rainfall has a very high variability in terms of the amounts and 

distribution, and climate change is adding extra pressure, leading to changes in seasonal patterns, as well 

as the spatial and temporal distributions. This will produce higher uncertainties in the water resources 

management and development, as rainfall is considered an essential input for the water resources 

availability and distribution. On the other hand, water demand is increasing continuously in the Eastern 

Nile Basin as a result of the human behavior, as well as the changes in economic and social activities. This 

has a direct and in direct impact on water security, agriculture and food production, energy, and 

environment. Therefore, the need for understanding the general trends and projections of rainfall in the 

Eastern Nile basin is becoming more crucial, and is of paramount importance for sustainable 

management of water resource.  

For the above-mentioned reasons, this study focuses in conducting rainfall trend analysis, to understand 

the historical changes in rainfall patterns and distribution, considering the Eastern Nile Basin with its four 

subbasins; Blue Nile, Baro-Akobo-Sobat, Tekeze-Setit-Atbara, and the Main Nile. 

1.2 Objectives 

The general objective of this report is to produce important information about rainfall trends in the 

Eastern Nile Basin by statistically and spatially analyzing historical rainfall data from different sources. 

1.2.1 Specific Objectives 

1. To collect and organize historical rainfall data for the Eastern Nile Basin from multiple satellite 

observations and country sources.  

2. To conduct statistical and spatial analysis for the data showing the trends of historical rainfall over 

the Eastern Nile Basin. 
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1.3 Study Area (the Eastern Nile Basin) 

1.3.1 Hydrology 

The Eastern Nile Basin (ENB) extends from 3º N to 33º N, and 26º E to 40 º E covering an area of 1.8 

million km2. It is divided into 4 subbasins in four countries; Ethiopia, Sudan, South Sudan, and Egypt. The 

main Nile - from the confluence of Blue Nile and White Nile in Khartoum to the Nile delta - is the largest 

subbasin with an area of 789,140 km2 (44 % total ENB area). The second subbasin is the Baro-Akobo-

Sobat-White Nile in the west, that covers an area of 460,000 km2 (26 % total ENB area), with two main 

tributaries originating from the Ethiopian hills and the Sudd wetlands. The third subbasin with the largest 

contribution is the Abbay-Blue Nile on the east that originates from the highlands of Ethiopia and extends 

from Lake Tana until it joints the White Nile in Khartoum, covering an area of 310,000 km2 (17 % total 

ENB area). Lastly the smallest subbasin is the Tekeze-Atbara subbasin on the east originating from the 

high lands of Ethiopia and covering an area of about 230,000 km2 (13 % total ENB area) (El-sheikh et al., 

2017; Mersha, 2014; NBI, 2018). 

Most of the ENB is a water scarce region, with most of the Nile water generating from the Ethiopian 

highlands. The main Nile has a total yearly runoff of about 83.8 BCM, with contributions of about 64% 

(53 BCM per year) and 28% (23.6 BCM per year) by the Abbay-Blue Nile and Tekeze-Atbara subbasin 

respectively, which both show clear wet and dry spells as a direct response to the seasonal rain patterns 

(Yitayew & Melesse, 2011). 

 

Figure 1.1 Eastern Nile Basin Subbasins (authors). 
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1.3.2 Climate 

The ENB has different climates as it extends through large latitudes, with wide range of elevations. It is 

host of extremities, ranging from the rugged highlands of Ethiopia in the east, to the wetland areas of 

South Sudan and Southern Ethiopia, to the deserts of Sudan and Egypt in the north. The main Nile 

subbasin has a mild land slope, and a hot and arid climate with mean annual rainfall less than 200 mm in 

Khartoum, reducing to the north direction until reaching about 25 mm at Cairo crossing the Saharan 

desert, and increasing again to 200 mm at the coastal line with the Mediterranean Sea. Moreover, the 

subbasin is subjected to high rates of evaporation (2.6 m/year at Aswan dam), and high potential 

evapotranspiration (ranging between 7.8 m to 1.8 m). The Baro-Akobo-Sobat subbasin is characterized 

by a humid climate, and intense rainfall with spatial variation because of the elevation differences.  Wet 

season is from May to October with the highest rainfall from June to October. The mean annual 

precipitation is between 3000 mm at the highlands and to 600 mm at low lands, and evapotranspiration 

is about 809 mm/year. Climate of the Tekeze-Atbara subbasin varies with altitude, with rainfall ranging 

between 1000 mm near the source at the Ethiopian highlands, to about 40 mm at the dry climate region 

near Atbara, Sudan. Evapotranspiration is estimated at 295 mm/year. Lastly, the Blue Nile subbasin 

climate ranges from temperate cool at the Ethiopian highlands to semiarid at Khartoum. The wet season 

(June to September) has the most rainfall, with smaller amounts occurring in the dry (October to January) 

and mild seasons (February to May). Rainfall ranges from 1600 mm/year to 2100 mm/year. Wide range 

of evaporation rates are observed in the Blue Nile basin (1500 mm/year at highlands to 6800 mm/year 

near Khartoum) (Hamouda et al., 2009; Mersha, 2014). 

1.3.3 Water Resources 

The water resources appear to be sufficient in terms of quantity and quality looking at the great potential 

opportunities of water, however, the Eastern Nile Basin faces many water availability and accessibility 

challenges, and climate change is imposing additional burden. In Ethiopia and Sudan, people suffer from 

the high variability of rainfall spatially and temporally, which cause drought and floods in different parts. 

Water accessibility is also a major problem (Arsano & Tamrat, 2005; Hamad & El-Battahani, 2005). 

Moreover, Egypt also faces challenges and limitations regarding fresh water availability with the 

increasing water demand, land use changes, and environmental requirements (Abd Ellah, 2020). 

Similarly, water insecurity is an existential threat in South Sudan, with a core concern of lack of access to 

safe drinking water supply (Edoardo, 2023). 

In terms of water quality, the surface waters generally have acceptable chemical quality, with poor 

physical condition (turbidity and color) due to soil erosion, especially for the rivers originating at the 

Ethiopian highlands. Abbay basin is generally suitable for most uses, however, in Sudan, surveys were 

conducted in Khartoum area to recognize sources of pollution in the Blue and White Nile and discovered 

that Sudan has used pesticides in agriculture since the 1930’s along with some 600 agro-chemicals, and 

organic pollutants are expected to be present. Exceptional high EC values were recorded near Tekeze 

river at Tigray region. In Egypt, water quality is one of the country most important environmental 

problems due to intensive agricultural and industrial activities. Number of physical and chemical 

characteristics of water were found to exceed acceptable range. Poor water quality was also attributed 
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to domestic waste and low flow conditions in parts of the subbasin (NBI, 2005; Hydrosult et al., 2007; 

Merfid, 2005). 

1.3.4 Socio-economic indicators 

Most of the population of the Eastern Nile Basin countries fall within the basin with different percent 

coverage (94% for Egypt, 99% for South Sudan, 87% for Sudan, and 38% for Ethiopia). Population figures 

are growing rapidly and expected to reach about 305 million in 2033, which will cause tension on water 

supply and affect food security level. All ENB countries except Egypt are categorized as poor developing 

countries. Majority of population are below poverty line, and people are totally dependent on natural 

resources for their livelihood.  Agriculture, domestic water supply, and hydropower are the main uses of 

EN water in the four countries, with lower uses for fisheries and industries. In Sudan and South Sudan, 

most of the agricultural lands fall within the ENB; 75% and 98% respectively. The percentage is around 

30% in Ethiopia and Egypt. More than 5 million hectares are equipped for irrigation in Eastern Nile Basin 

(ENTRO, 2018). The high variability of rainfall poses challenges for the upstream and midstream countries 

of Ethiopia, South Sudan, and Sudan, as they mainly practice rain-fed agriculture. The basin has potential 

for the production of different crops, pastoralism, forestry, and fisheries, which can contribute to poverty 

reduction. Access to electricity is low in the region which hinders the economic growth. countries of the 

Eastern Nile basin except Egypt suffer from the non-sufficient and expensive energy supply despite of the 

available potential of hydropower. Only 8% of the hydropower potential is utilized, and biomass is being 

used instead. The population growth, urbanization, industrialization, and expansion in agriculture are 

exacerbating the water stress. Moreover, other political factors also have impact on the water resources 

development of the area (Hamouda et al., 2009; ENTRO, 2018). 
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2 Literature Review  

2.1 Climate change impact on rainfall patterns 

Climate change has a great impact on temperature and precipitation, which are the most important 

climate variables, with a direct and indirect impact on hydrology, and thus the environment and human 

life.  Africa is one of the most vulnerable continents to climate change and climate variability, a situation 

aggravated by the interaction of ‘multiple stresses’, occurring at various levels, and low adaptive capacity 

(Belay zerga, Getaneh, 2016). Several studies on precipitation and temperature change indicated that 

the African continent is now warmer than it was 100 years ago, and the rainfall exhibited higher inter-

annual and intra-seasonal variability. According to the Intergovernmental Panel on Climate Change 

(IPCC), the increase in greenhouse gases results in climate change, which in turn, leads to heavy rainfall, 

extreme drought, and sea level rise (Cooper & Coe, 2011). In the recent years the significant trend of 

annual rainfall increases in the Eastern Nile Basin countries more than previous years  from June to 

September, while from March to May the rainfall trend is significantly decreasing (Mohamed et al., 2022). 

In the Eastern Nile part of Ethiopia, the flood vulnerable areas are the flood plains at Lake Tana, the 

Gambella plain, and the Humera area of the Tekeze basin, as well as flash floods at different locations. In 

the Eastern Nile part of Republic of South Sudan, riverine floods as well as flash floods regularly affect 

residential area in the Akobo County and Sobat River plains. Most people there live and work in 

settlements in flood prone areas because their livelihoods depend mainly on farming in flood plains, 

fishing, and/or livestock. The Malakal town at nearby convergence of the Sobat and the White Nile River 

is also affected. Most floods occur annually. Estimates indicate that flash floods affect about one million 

people regularly. In Sudan, flood prone areas are along the Blue Nile from El Diem to Khartoum, and Gash 

River around Kassala City, as well as areas along the White Nile. Flash floods happen more often than 

riverine floods. In the previous years the flood increased in residential area along the Blue Nile, Dinder, 

Al-Rahad, Al-Gash and Tekeze-Atbara-Setit. The houses are in floodplains that are more defenseless to 

high flood impacts as well as highly vulnerable to economic, physical/ infrastructural, and attitudinal 

dimensions (ENTRO, 2006). 

On the other hand, many areas of the Eastern Nile basin countries suffer from droughts. The Eastern Nile 

Basin part of Sudan is shifting progressively to semi-desert which located between latitude 1̊0 – 1̊8 N, 

with a low rainfall savannah in Kassala and River Nile States (Atbara River) and high rainfall savannah 

towards the south in Blue Nile, Senar and Gazira States, with rainfall varies from north to south about 

25-700 mm between June and October, with temperatures ranging from 30-40ºC in summer and 10-25ºC 

in winter. Those areas are seriously affected by drought which affects the economic, social and 

environmental aspects (National Council for Combating Desertification, 2018). In South Sudan, the 

drought can be attributed to regional climate change. As the country is one of the most rapidly warming 

countries in the world, with temperatures increasing two and half times more than average global 

warming, that cause high evaporation and dry for small streams depression area and form a scarcity of 

water in some villages of Upper Nile State which have been wreaking to livelihoods, food security and 

sustainable development. (World Bank Group.org, 2023).   In the Eastern Nile Basin part of Ethiopia, the 
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climate contains three seasons Short rainy season (Belg) Long rainy season (Kiremt) And dry season 

(Bega), In the recent years some studies identified that the annual of (Belg), and (Kiremt) precipitation 

over the whole of Abbay-Blue Nile Basin is significantly decreasing except (Bega) season, drought events 

are occurring frequently in different parts and being worsened by the anthropogenic activities that will 

affect the economic system and livelihood (El-Sayed et al., 2022).  

Studies agreed on the projected increase of temperature over the Nile basin in the next century, but still 

the impact of climate change on precipitation anticipations is arguable. The precipitation in the Eastern 

Nile including Blue Nile and Tekeze-Atbara is uncertain, with possibility for reduced runoff with the 

increase of temperature. On the other hand, White Nile is expected to witness climate change impact on 

the spatial variability of water, increase of runoff due to the increase of rainfall at Lake region, effect on 

lake level, and moderate effect on downstream flows (Beyene et al., 2010; Conway, 2005; Soliman et al., 

2009). Different researchers used Global Circulation Models GCMs to predict climate change. Study of 

Kim & Kaluarachchi, (2009) suggests increasing of rainfall over the mid of century at the Blue Nile. On 

the other hand, (Elshamy et al., 2009) suggests less rainfall over the Blue Nile. The projected increase in 

temperature and thus evaporation, is expected to decrease runoff (Melesse, 2011), however, High 

uncertainties and significant changes were found when estimating the runoff, evapotranspiration, and 

soil moisture based on downscaling different GCMs temperature and precipitation predictions for the 

Eastern Nile Basin (Setegn et al., 2011). Generally, the Eastern Nile basin is expected to be wetter in 

coming decades, with greater frequency and magnitude of extreme and localized climatic events (heavy 

rain events and droughts) (Melesse, 2011). The seasonal and spatial distribution of those climatic factors 

also needs to be considered to assess the risks and benefits (for example, higher precipitation in the 

winter at the Blue Nile have lower value as rainfed agriculture is practiced). Soliman, (2009) suggests 

similar future annual flow for the Blue Nile with changes in seasonality and spatial variability (higher 

discharge at wet season and reduced discharge through the dry season). 

The above-mentioned changes may have potential benefits in some parts of the basin; however, it 

causes higher uncertainties on water availability, which negatively affects agricultural production and 

food security, threatens the environment, biodiversity, and health, affect energy production, and results 

in a socioeconomic problem (Asfaw et al., 2018; IPCC, 2008).  

 

2.2 Rainfall Trends Analysis in the Eastern Nile Basin 

According to Onyutha et al., (2016), the precipitation trends in 39 locations in the Nile River Basin (NRB) 

were carried out, so in the equatorial region, the annual precipitation trend was found mainly positive 

with a significant level of α = 5% in 4 of the 7 stations. This study reveals that the annual trend analysis 

for Sudan, Ethiopia and Egypt was negative with a significant level of α = 5% in 69% of the 32 stations. 

The monthly, seasonal, and annual rainfall intensities were considered for trend analysis and the missing 

values were filled using the IDW interpolation techniques. Moreover, FAOCLIM contains monthly 

worldwide agro-climatic data for 28,100 stations with up to 14 observed and computed agro-climatic 

variables. In the Blue Nile basin, previous trend analyses based on short-term annual rainfall from a few 
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meteorological stations have been mostly limited to sub-basins. The form of trend analyzed in the rainfall 

of the study area seems to have mostly been rather decadal or multi-decadal variability than a long-term 

trend (Taye & Willems, 2012). 

In addition to climate factors, land use land cover changes in water abstraction and watershed 

management practices alter the hydrological characteristics of a river basin and consequently the 

extreme flows. According to Melese et al. (2010), the upper Blue Nile basin has experienced 

environmental and natural resource degradation attributed to both anthropogenic and climatic factors. 

To understand the influence of these factors on extreme river flows, it is important to go back to historical 

records and evaluate the temporal variability of extreme flows. Studying the temporal variability of 

extreme flows will also be useful to understand whether extreme events have become more frequent or 

more intense in recent years. The limitation of the study conducted by Onyutha & Willems, (2015); Taye 

& Willems, (2012) in the Nile basin analyzed the trend and variability using MK test and quantile 

disturbance method (QPM). The study did not cover enough locations of all the Nile Basin Riparian 

countries because they analyzed variability using QPM which directly takes into account rainfall intensity 

(without rescaling), thus making the method susceptible to possible exaggeration of anomalies in the 

event of the existence of an outlier. Onyutha et al., (2016) analyzed the variability in all countries 

bordering the Nile basin using the nonparametric anomaly indicator method (NAIM). The difference 

between QPM and NAIM is that QPM analyses variability in terms of frequency of extreme events and 

extreme precipitation disturbance, while NAIM calculates anomalies in the series after applying temporal 

convolution to the non-parametrically resized dataset.  

2.3 Rainfall Data Types  

As precipitation trends analysis is essential ranging from climate monitoring to water resources 

management, agriculture, and hydrological forecasting, especially with the high spatial and temporal 

variability, long records of data are required. Precipitation data can be acquired either from ground 

stations, spatial measure of precipitation through weather radars, or from satellite observations (Kidd & 

Huffman, 2011; Sarojini et al., 2016). 

2.3.1 Rain Gauges Stations 

The rainfall direct measurements that can be obtained from surface gauge networks have limitations 

regarding the coverage of land and oceans areas. Point precipitation in the form of depth overtime is 

directly assessed using different gauges such as accumulation gauges, tipping-bucket gauges, weighing 

gauges, and optical gauges. Each of these types has its strengths and weaknesses (Sun et al., 2018).  

Generally, the ground stations gauges are highly affected by environmental complications and different 

sources of error, namely; evaporation, wind, gauge location, instrument reading error, and the 

spatiotemporal variation in drop-size distribution (Michelson, 2004). More sophisticated weather radars 

have been developed and used to improve the measurements of precipitation, its composition, and the 

potential physical processes underlying its formation. The radars can detect real-time raindrops as well 

as measuring the drop-size distribution, which means providing a three-dimensional structure of rainfall. 

Similar to rain gauges, weather radars are also limited in extent and number. The lack of accessibility and 
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funding has limited the development of a global radar network (Habib, Haile, et al., 2012; Kidd & 

Huffman, 2011). Quantifying rainfall represents a major challenge especially in Africa, where rain-gauge 

networks are poorly distributed (Awange et al., 2016). 

2.3.2 Satellite Observations  

On the other hand, the satellite observations provide unparalleled advantage of detecting precipitation 

on a global scale in the shape of temporal and spatial samples which correspond with precipitation 

characteristics. In recent decades, a wide range of satellite-based precipitation datasets with good spatial 

and temporal resolutions have become accessible (Awange et al., 2016). These satellite-related data sets 

have inherent uncertainties and limitations of their short length of record, but they still provide valuable 

and important information for the weather process, drought, and hydrological monitoring. Precipitation 

products are either IR based; i.e., derived from the geostationary satellites using Thermal Infrared (IR) 

sensors, with high temporal resolution, or MW based, i.e., derived from the low earth orbiting satellite 

using passive and active Microwave (MW) sensors, with better accuracy. Some products use both 

techniques to combine the advantages (Kidd & Huffman, 2011; Sun et al., 2018). 

Different types of global precipitation data sets are available, including the gauge-based, the satellite-

based, and the reanalysis data sets. Some data sets, especially the gauge-based data sets and reanalysis, 

are generally provided long-term records of precipitation, which are suitable for climate studies. The 

description of these types is as follows:  

2.4 Rainfall data products 

I. Gauge-based products 

These products were established through transformation of ground stations data into grid based. several 

gridded data were developed and used. For example, the Global Precipitation Climatology Centre (GPCC) 

developed a strong dataset based on the National Meteorological Organizations from 158 nations and 

31 regional suppliers (Becker et al., 2013). Another dataset is the Climatic Research Unit gridded Time 

Series (CRU TS) that considered observations from 1961 to 2018, and provides a monthly grid with high 

resolution (Harris et al., 2020). Moreover, the Climate Prediction Center (CPC) launched different gauge-

based products which consist of observations from 30,000 ground stations (Sun et al., 2018). Description 

of number of these products is illustrated in Table 2. 1 below. 

II. Satellite-based products 

These products depend mainly on the Thermal Infrared sensors or the Micro-wave sensors in detecting 

the precipitation. Large number products were established and widely used. As example for number of 

the widely used products, the TRMM datasets (TRMM 3B42 and TRMM 3B43) which include estimates 

from different satellites, are the most extensively used products. It investigates the climatological 

distribution of rainfall and its frequency and intensity. However, there is inhomogeneity in the temporal 

records exist, with underestimation of precipitation in regions of intense convection overland and high 

latitudes (Liu et al., 2012). As continuation for TRMM, the Global Precipitation Measurement (GPM) 

products were developed. The last product of GPM is IMERG6, that merge rainfall data of different 

satellite based and gauge calibrated products (Nasa, 2022). 
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Number of satellite rainfall products were then established and widely used such as PERSIANN, CMAP 

20, CPCP and CPCP 1dd (Huffman et al., 2001). PERSIANN-CDR is one of the important products that have 

been commonly used globally as it has high resolution and consistency in long-term records (Ashouri, 

2015). Moreover, the Climate Hazards Group developed the CHIRPS satellite datasets that have become 

widely used. It creates gridded rainfall time series for trend analysis and seasonal monitoring high 

resolution (Katsanos et al., 2016). Additionally, the Africa Rainfall Climatology established an algorithm 

(ARC2 RFE2.0) that provide daily precipitation estimations over Africa at high spatial resolution (Novella 

& Thiaw, 2013). Overview and description of number satellite rainfall products that have been used in 

the Eastern Nile Basin area is illustrated in Table 2. 1 below. 

III. Reanalysis products 

The reanalysis products are developed by reprocessing and merging irregular climate observations and 

models and models that encompass many physical and dynamical processes using modern 

forecasting/mathematical simulation systems in order to generate unform gridded synthesized 

multidecadal datasets, and create a stable data system with spatial homogeneity and temporal 

continuity. Those products have limitations depending on the time period and location (Sun et al., 2018; 

National center for atmospheric research, 2016). Different reanalysis products were developed and being 

used with improving quality such as the NCEP1/NCEP2 and the two European Centre for Medium-Range 

Weather Forecasts (ECMWF) (ERA-40 and ERA-Interim) reanalysis systems (Sun et al., 2018). The NCEP2 

was produced as an updated version of NCEP, nevertheless, almost similar performance for the two 

products was found by different researches (Kanamitsu et al., 2002). Furthermore, the performance of 

ERA-40 and ERA-Interim was also evaluated. ERA-40 was found to overestimate the precipitation of the 

tropical oceans (Uppala et al., 2005), while ERA-Interim showed less precipitation compared to ground 

observations (Dee et al., 2011). Other datasets were produced more recently such as the Twentieth 

Century Reanalysis system (20CRv2), the NCEP Climate Forest System Reanalysis system (CFSR), the 

Modern-Era Retrospective Analysis for Research and Application system (MERRA), and the Japanese 55-

year Reanalysis (JRA-55), with more advanced models and higher spatial resolution (Sun et al., 2018).  

Those products have limitations depending on the time period and location (National center for 

atmospheric research, 2016). The reanalysis precipitation datasets showed overestimated rainfall than 

the satellite-based products especially over tropical regions, and at high elevations over global lands 

compared to ground observations, with higher inconsistencies in arid and semiarid regions (Pfeifroth et 

al., 2013; Hu et al., 2016; Cattani et al., 2016; (Dinku et al., 2011). However, CFSR because of its fine 

resolution, was able to reproduce the regional pattern, mean, and variability of rainfall in Africa (Zhang 

et al., 2013). Table 2. 1 below summarize the commonly used precipitation products focusing on datasets 

which previously used in the Eastern Nile Basin.  
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Table 2. 1 Summary of the commonly used precipitation products 

Dataset Name 
Data Provider 

Data 

Input 

Record 

Length 

Spatial 

Coverage 

Spatial 

Resolution 

Temporal 

Resolution 
Reference 

  Full Name Abbreviation 

1 
Climate Hazards Group InfraRed Precipitation 

with Station data 
CHIRPS 

Climate 

Hazards Center 

Satellite 

and gauge 

data 

1981-

present 

50°S - 

50°N 

0.05° (5.5 

km) 

Daily, 

Monthly, 

and Annual 

https://www.chc.ucsb.edu/data/chirps.  

2 
Tropical Applications of Meteorology using 

Satellite data 
TAMSAT 

IGAD Climate 

Prediction and 

Application 

Centre 

Satellite 

data 

1983-

present 

Eastern 

Africa 
4 km 

Dailly, 10-

day, and 

monthly 

https://www.icpac.net/data-center.  

3 
Tropical Rainfall Measuring Mission 

3B42/3B43 

TRMM 

3B42/TRMM 

3B43 

NASA and 

Japan's 

National Space 

Development 

Agency 

Satellite 

data 

1998-

2014 

50°N to 

50°S 

0.25° (27 

km) 

3-hourly 

and 

monthly 

https://climatedataguide.ucar.edu/climat

e-data/trmm-tropical-rainfall-measuring-

mission.  

4 Global Precipitation Measurement GPM NASA 
Satellite 

data 

2014-

present 
60°N-60°S 

0.1° (11 

km) °  

30-minute 

and 

monthly 

https://gpm.nasa.gov/missions/GPM.  

5 Integrated Multi-satellite Retrievals for GPM GPM IMERG NASA 

Multiple 

satellites 

data  

2000-

present  
60°N-60°S 

0.1° (11 

km) °  

30-minute 

and 

monthly 

https://gpm.nasa.gov/data/imerg.     

6 
Integrated Multi-satellite Retrievals for GPM 

Gauge-Calibrated 

GPM IMERG-

GC 
NASA 

Satellite 

and gauge 

data 

2000-

present  
60°N-60°S 

0.1° (11 

km) °  

30-minute 

and 

monthly 

https://gpm.nasa.gov/data/imerg.            

7 Global Satellite Mapping of Precipitation GSMaP 

JAXA (Japan 

Aerospace 

Exploration 

Agency) 

Satellite 

data  

2000-

present  

60°S to 

90°N 

0.1° (11 

km) °  

Hourly and 

daily  

https://developers.google.com/earth-

engine/datasets.  

8 
Global Satellite Mapping of Precipitation 

Gauge-Calibrated) 

GSMaP-

Gauge 

JAXA (Japan 

Aerospace 

Exploration 

Agency) 

Satellite 

and gauge 

data 

1998-to 

Present 

60°N-

90°N 

0.1° (11 

km) °  

1 hour, but 

updated 

half-hourly 

https://www.sciencedirect.com/science/a

rticle/pii/S1878029611005494.  

https://www.chc.ucsb.edu/data/chirps.%20Lavers,%20et%20al.%20(2022).
https://www.icpac.net/data-center.%20Gwatida,%20et%20al.%20(2023).
https://climatedataguide.ucar.edu/climate-data/trmm-tropical-rainfall-measuring-mission.%20Tanessong,%20et%20al.%20(2022).
https://climatedataguide.ucar.edu/climate-data/trmm-tropical-rainfall-measuring-mission.%20Tanessong,%20et%20al.%20(2022).
https://climatedataguide.ucar.edu/climate-data/trmm-tropical-rainfall-measuring-mission.%20Tanessong,%20et%20al.%20(2022).
https://gpm.nasa.gov/data/imerg.%20%20%20%20%20%20%20%20%20%20%20Xie,%20et%20al.%20(2015).
https://developers.google.com/earth-engine/datasets.%20Muto,%20et%20al.%20(2023).
https://developers.google.com/earth-engine/datasets.%20Muto,%20et%20al.%20(2023).
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9 
Climate Prediction Center Morphing 

technique 
CMORPH 

Center for 

Environmental 

Data Analysis 

Satellite 

data 

2002 

- 2017 
60S-60N 

0.25 

degrees (27 

km) 

30-minute 

and daily 
https://catalogue.ceda.ac.uk/uuid/         

10 African Rainfall Climatology Version 2 ARC2 

IGAD Climate 

Prediction and 

Application 

Centre 

Satellite 

and gauge 

data 

1983-

Present 

Eastern 

Africa 

0.1° (11 

km) °  

Daily, 10 

Days, and 

Monthly 

https://www.icpac.net/data-center/arc2/  

11 

Precipitation Estimation from Remotely 

Sensed Information using Artificial Neural 

Networks 

RERSIANN 

Center for 

Hydrometeorol

ogy and 

Remote 

Sensing 

(CHRS), 

University of 

California, 

Irvine 

Satellite 

data 

2000 - 

Present 

 60°S to 

60°N 

0.25 

degrees (27 

km) 

Hourly, 

daily, 

monthly & 

yearly  

https://climatedataguide.ucar.edu/climat

e-data/persiann-cdr-precipitation-

estimation-remotely-sensed-information-

using-artificial  

12 

Real-time Enhanced Regional Scale Imaging 

Actively Sensed Information and Numerical 

Weather Prediction–Climate Change Scenario 

RERSIANN-

CCS 

Center for 

Hydrometeorol

ogy and 

Remote 

Sensing 

(CHRS), 

University of 

California, 

Irvine 

Satellite 

data 

2003-

present 

60°S to 

60°N 

0.25 

degrees (27 

km) 

Hourly, 3-

hourly, 6-

hourly, 

daily, 

monthly, 

yearly 

ftp://persiann.eng.uci.edu/CHRSdata/PER

SIANN-CCS 

13 

Precipitation Estimation from Remotely 

Sensed Information using Artificial Neural 

Networks–Climate Data Record 

PERSIANN-

CDR 

Center for 

Hydrometeorol

ogy and 

Remote 

Sensing 

(CHRS), 

University of 

California, 

Irvine 

Satellite 

and gauge 

data 

1983-

2021 
60S - 60N  

0.25 

degrees (27 

km) 

 Daily, 

monthly, 

yearly 

https://climatedataguide.ucar.edu/climat

e-data/persiann-cdr-precipitation-

estimation-remotely-sensed-information-

using-artificial  

https://climatedataguide.ucar.edu/climate-data/persiann-cdr-precipitation-estimation-remotely-sensed-information-using-artificial%20%20%20%20%20%20%20Baig,%20et%20al.%20(2023).
https://climatedataguide.ucar.edu/climate-data/persiann-cdr-precipitation-estimation-remotely-sensed-information-using-artificial%20%20%20%20%20%20%20Baig,%20et%20al.%20(2023).
https://climatedataguide.ucar.edu/climate-data/persiann-cdr-precipitation-estimation-remotely-sensed-information-using-artificial%20%20%20%20%20%20%20Baig,%20et%20al.%20(2023).
https://climatedataguide.ucar.edu/climate-data/persiann-cdr-precipitation-estimation-remotely-sensed-information-using-artificial%20%20%20%20%20%20%20Baig,%20et%20al.%20(2023).


18 
 

14 

Precipitation Estimation from Remotely 

Sensed Information using Artificial Neural 

Networks - Dynamic Infrared Rain Rate near 

real-time 

PERSIANN-

PDIR-Now 

Center for 

Hydrometeorol

ogy and 

Remote 

Sensing 

(CHRS), 

University of 

California, 

Irvine 

Satellite 

data 

2000 - 

Present 

60°S to 

60°N 

0.04° (4.5 

km) 

Hourly, 3,6-

hourly, 

daily, 

monthly, 

yearly 

ftp://persiann.eng.uci.edu/CHRSdata/PDI

RNow 

15 

Precipitation Estimation from Remotely 

Sensed Information using Artificial Neural 

Networks-Cloud Classification System-Climate 

Data Record 

PERSIANN-

CCS-CDR 

Center for 

Hydrometeorol

ogy and 

Remote 

Sensing 

(CHRS), 

University of 

California, 

Irvine 

Satellite 

and gauge 

data 

1983 - 

Present 

60°S to 

60°N 

0.04° (4.5 

km) 

hourly, 

daily, 

monthly, 

yearly 

https://climatedataguide.ucar.edu/climat

e-data/persiann-cdr-precipitation-

estimation-remotely-sensed-information-

using-artificial.  

16 NOAA Climate Prediction Center NOAA CPC 

NOAA (Physical 

Science 

Laboratory) 

Satellite 

Data and 

gauge 

data 

1948 

- 2022 

20.125N-

49.875N, 

230.125E-

304.875E 

0.25° (27 

km) 
Daily 

https://psl.noaa.gov/data/gridded/data.u

nified.daily.conus.html  

17 Global Precipitation Climatology Project NOAA GPCP 

National 

Center for 

Environmental 

Information 

Satellite 

and gauge 

data 

1979-

present 

60 S - 60 

N 

2.5 degrees 

(310 km) 
Monthly 

https://www.ncdc.noaa.gov/cdr/atmosph

eric/precipitation-gpcp-monthly.  

18 Global Precipitation Climatology Centre GPCC 

NOAA (Physical 

Science 

Laboratory 

Gauge 

data 

1891-

present

  

90.0N - 

90.0S 

0.25 (27) 

and 0.1° 

(11 km) ° 

Daily and 

monthly 

https://psl.noaa.gov/data/gridded/data.g

pcc.html  

19 
Multi-Source Weighted-Ensemble 

Precipitation 

MSWEP v2.2, 

v2.8 
gloh20 

Satellite 

and 

reanalysis 

data  

1979 -

present 
at equator 

0.1° (11 

km) °  
Monthly https://www.gloh2o.org/mswep.  

20 
Tropical Rainfall Measuring Mission Multi-

Satellite Precipitation Analysis 
TMPA 

EARTHDATA 

GES DISC 

Satellite 

Data 

1998 

- 2019 

50°N to 

50°S 

0.25 

degrees (27 

km) 

Daily 
https://disc.gsfc.nasa.gov/datasets/TRM

M_3B42_Daily_7/summary.  

https://www.ncdc.noaa.gov/cdr/atmospheric/precipitation-gpcp-monthly.%20Huffman,%20et%20al.%20(2019).
https://www.ncdc.noaa.gov/cdr/atmospheric/precipitation-gpcp-monthly.%20Huffman,%20et%20al.%20(2019).
https://psl.noaa.gov/data/gridded/data.gpcc.html
https://psl.noaa.gov/data/gridded/data.gpcc.html
https://www.gloh2o.org/mswep.
https://disc.gsfc.nasa.gov/datasets/TRMM_3B42_Daily_7/summary.
https://disc.gsfc.nasa.gov/datasets/TRMM_3B42_Daily_7/summary.
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21 
TAMSAT African Rainfall Climatology and 

Time series 
TARCAT   

Satellite 

and 

ground 

Data 

1983 - 

present 
Africa 4km Decadal 

http://www.met.reading.ac.uk/~tamsat/d

ata.  

22 Merged Analysis of Precipitation  CMAP 

NOAA (Physical 

Science 

Laboratory 

Satellite 

and gauge 

data 

1979 - 

present 

88.75N - 

88.75S 

2.5° (270 

km) 
Monthly 

https://psl.noaa.gov/data/gridded/data.c

map.html  

 

https://iridl.ldeo.columbia.edu/SOURCES/.NOAA/.NCEP/.CPC/.Merged_Analysis/.monthly/.v1201/.dataset_documentation.html
https://psl.noaa.gov/data/gridded/data.cmap.html
https://psl.noaa.gov/data/gridded/data.cmap.html
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2.5 Validation and evaluation of Satellite-based rainfall products 

Different satellite precipitation products have been launched and widely used in numerous 

studies and applications in assessing climate variability and climate change (Gehne et al., 2016; 

Huffman et al., 2001). Most of these products have been evaluated to assess their limitations and 

uncertainties. The performance of many satellite datasets has been validated at different 

spatiotemporal scales. The estimated precipitation was not completely consistent, and this can 

be attributed to their different sources, quality control schemes, and estimation methods. With 

the research and development, satellite rainfall data products’ accuracy and resolution are 

increasing, and reached a good level of maturity (Adler et al., 2003; Feidas et al., 2005; Kidd & 

Huffman, 2011; Sun et al., 2018). The following section shows overview of important previous 

studies that focus on evaluating the performance of satellite precipitation products at different 

scales. 

2.5.1 Performance of satellite precipitation products in a global scale 

Many researchers have compared global precipitation products in their studies. For example, Kidd 

& Huffman, (2011) provided an overview of the global satellite precipitation observations starting 

from the basis of satellite systems, the production, availability and validation of these rainfall 

datasets. More recently, Gehne et al., (2016) studied the characteristics of precipitation from 11 

products (three global high-resolution precipitation products (HRPPs), four global climate data 

records (CDRs), and four reanalysis products) with  at least daily temporal resolution. 

Furthermore, Herold et al., (2017) assessed five commonly used satellite precipitation products, 

namely; CHIRPS, GPCC, TRMM T3B42v7, PERSIANN-CDR, GPCP-1D. He explored the uncertainties 

in the daily observed precipitation extremes over 50°S–50°N. Lately, Sun et al., (2018) provided a 

comprehensive review of 30 available global precipitation products including gauge-based, 

satellite related, and reanalysis data sets. He evaluated 22 monthly or daily precipitation products 

with spatial resolutions varying from 0.04° to 2.5°. These include gauge-based products (CRU, 

GPCC, GPCC-daily, PRECL, UDEL, and CPC-Global), satellite-related products, (PERSIANN-CCS, 

PERSIANN-CDR, CMORPH, TRMM 3B43, TRMM 3B42 GPCP, GPCP 1dd, CMAP, and MSWEP), and 

reanalysis products (NCEP1, NCEP2, ERA-Interim, 20CRv2, JRA-55, MERRA, and CFSR). Differences 

and discrepancies in magnitude and variability at annual, seasonal, and daily timescales were 

found. Similarly, variations were also found in precipitation estimates by region. The author 

attributed the reliability of the different datasets to the number and the spatial coverage of the 

surface stations, the satellite algorithms, and the data assimilation models. 

2.5.2 Performance of satellite precipitation products in Africa (continental scale) 

Number of researchers have studied and evaluated the commonly used satellite precipitation 

products in Africa. For mentioning some of the finding of relatively recent products, Awange et 

al., (2016) evaluated number of six widely used satellite-based rainfall datasets (PERSIANN, ARC2, 

TRMM, CMORPH, TAMSAT, and GSMaP) with monthly time scales over Africa between 2003 and 
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2010. Global Precipitation Climatology Centre (GPCC) and RG observations over the Greater Horn 

of Africa (GHA) data were used for the validation. PERSIANN dataset was found to be the most 

suitable overmost Africa, followed by ARC2, TRMM, CMORPH, TAMSAT, and GSMaP. In terms of 

the spatio-temporal variability of rainfall over Africa, patterns of GPCC, TRMM, PERSIANN, and 

ARC2 were found to be similar but different from those of TAMSAT, CMORPH, and GSMaP. 

CMORPH appeared to be the most suitable product in the Great Horn of Africa, consistent with 

previous studies. In the same year, Serrat-Capdevila et al., (2016) evaluated the daily estimates 

of the TRMM, TMPA, PERSIANN, and CMORPH rainfall datasets over Africa for years 2001 – 2013. 

The author considered the Global Precipitation Climatology Project one Degree Day (GPCP-1dd) 

dataset as reference for the comparison. The study showed that the raw estimates of TMPA show 

higher efficiency. PERSIANN was successful in correctly capturing precipitation events, in 

agreement with the previously mentioned study. The areas that follow the position of the ITCZ 

oscillating seasonally over the equator showed relatively better performance demonstrating good 

match between satellite estimates and rainfall regime. 

Maidment et al., (2017) conducted research that assessed the performance of the daily rainfall 

products; TAMSAT v2 and TAMSAT v3 between 1983 to 2017, by the disaggregation of 10-day (v2) 

and 5-day (v3) total rainfall estimates to a daily time-step. Ground observation from Mozambique, 

Niger, Nigeria, Uganda, and Zambia (different climates) were used for comparison.  TAMSAT 

products were not able to accurately detect rainfall amounts, but they showed better reliability 

in capturing rainy days. 

More recently, Cattani et al., (2021) assessed the capability of TAMSAT v3 and CHIRPS (daily 

satellite-based products), as well as MSWEP v2.2 (merge satellite-based, gauge, and reanalysis 

datasets) considering the period 1983 – 2017, without rain-gauge validation. Except the complex 

mountainous and coastal areas, the 3 products were found to show similar performance, with 

increasing agreement over time, and more stable ability to detect rainy days and daily rainfall 

amounts. Macharia et al., (2022) evaluated the performance of 3 gauge-calibrated satellite 

rainfall products (CHIRPS, TAMSAT, and GSMaP_wGauge), as well as 1 satellite-only rainfall 

product (GSMaP) over Africa. He used 3 years of rainfall data acquired from 596 stations operated 

by the Trans-African Hydrometeorological Observatory (TAHMO). For the daily mean rainfall over 

Africa, GSMaP was found to score higher detection of events compared to CHIRPS and TAMSAT. 

CHIRPS produced the highest monthly biases in East Africa, TAMSAT in southern Africa, and 

GSMaP in West Africa. In seasonal rainfall, satellite datasets showed significant biases. GSMaP 

produced better results at different time scales. 

Lastly, Mekonnen et al., (2023) conducted a recent study for evaluating the accuracy of 8 

gauge_corrected satellite rainfall datasets (RFE v2.0, ARC v2.0, MSWEP v2.8, TAMSATv3.1, 

PERSIANN-CDR ERA 5, and CHIRPS) accros Africa at number of spatial and temporal scales. This 

study provides useful perceptions for selecting suitable satellite bases precipitation datasets for 
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the regional or continental applications. Performance of the different products was compared to 

ground observations between 2001 to 2020. For temporal timescales, the study showed that 

generally all products performed poorly at daily timescale, while RFE v2.0, ARC v2.0, and MSWEP 

v2.8 were found to be reliable at the monthly and annual timescales. Comparatively, TAMSATv3.1, 

PERSIANN-CDR, and ERA 5 performed poorly in detecting in situ observations. On spatial different 

scales, IMERG-F v6B and RFE v2.0 showed higher reliability in capturing heavy rainfall events, 

while ARC v2.0 and CHIRPS v2.0 were successful in detecting the dry events (droughts). Generally, 

on regional scale, the performance of MSWEP v2.8, RFE v2.0, ARC v2.0, and CHIRPS v2.0 was 

better in  Northern Africa, Western and Southern, Central Africa, and  Eastern Africa  respectively 

at monthly timescale. Table 2. 2 below summarize the findings of the above-mentioned studies. 

 
Table 2. 2 Summary of the performance of satellite precipitation products in Africa (continental scale) 

Satellites Best Performance Study 

PERSIANN, ARCv2, TRMM, CMORPH, 
TAMSAT, and GSMaP, GPCC 

PERSIANN: overmost Africa, 
CMORPH: over GHA 

Awange et al., 
(2016) 

TRMM, TMPA, PERSIANN, and CMORPH PERSIANN and TMPA 
Serrat-Capdevila 
et al., (2016) 

TAMSAT v2 and TAMSAT v3 None 
Maidment et al., 
(2017) 

TAMSAT v3 and CHIRPS (daily satellite-
based products), as well as MSWEP v2.2 

All are good, and better in 
detecting rainy days and daily 
amounts 

Cattani et al., 
(2021) 

CHIRPS, TAMSAT, and GSMaP_wGauge, 
GSMaP 

GSMaP 
Macharia et al., 
(2022) 

RFE v2.0, ARC v2.0, MSWEP v2.8, 
TAMSATv3.1, PERSIANN-CDR ERA 5, and 
CHIRPS 

Complex results, CHIRPS was 
good in East Africa 

Mekonnen et al., 
(2023) 

 

2.5.3 Performance of satellite precipitation products in East Africa (regional scale) 

East Africa has different climates varies from wet coastal and mountainous regions, to dry arid 

regions(Dinku et al., 2011). Going more specifically with the study objective, the following section 

provides an overview for some of the researches conducted in East Africa focusing on evaluating 

and validating number of satellite rainfall products. Starting from Dinku et al., (2007), the author 

evaluated the performance of 3 low spatial and temporal resolution (GPCP, CMAP, and TRMM-

3B43), and 5 high spatial and temporal resolution (NOAA-CPC African rainfall estimation 

algorithm, GPCP one degree daily 1DD, TRMM-3B42, TAMSAT, and CMORPH). Within east africa, 

where elevation varies from below sea level to 4620 m. TRMM-3B43 and CMAP from the first 

group and CMORPH, TAMSAT and TRMM-3B42 from the second group appeared to have the best 

performance. Moreover, Dinku et al., (2011) continued his work by focusing on exploring the 
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performance of AR2C, CMORPH, and TRMM 3B42 satellite precipitation data sets on the 

mountainuous climate at Ethiopian highlands, and the arid region over Somalia, Djibouti, and 

parts of Ethiopia. The author recommended calibrating the satellite algorithms with rain-gauge 

observations as the results showed underestimation of rainfall over the highlands of Ethiopia, 

while the overestimation over the dry region. Later, Habib, et al., (2012) focused on comparing 

the performance of the TMPA 3B42 and CMORPH satellite rainfall products over the Nile Basin in 

Eastern Africa. The results showed the success of the two datasets in capturing some of the 

region-specific rainfall patterns over the Nile Basin, with substantial underestimation and 

overestimation by TMPA and CMORPH respectively. The performance is better over the equatorial 

region.  

More recently, Cattani et al., (2016) used the Global Precipitation Climatology Centre (GPCC) 

climatological gauge monthly data as reference to evaluate the performance of 6 satellite rainfall 

products (CPC RFE, CMORPH, GSMaP, TMPA 3B42, PERSIANN, TAMSAT TARCAT) over East Africa 

for the years 2001– 2009. The satellites’ datasets succussed in reproducing the seasonality, except 

for the mountainous regions. TMPA 3B42 showed the best performance, however, some of the 

products were bias corrected. Furthermore, the study of Kimani et al., (2017) which was 

conducted over East Africa considering 7 satellite rainfall datasets (TAMSAT, TARCAT, CHIRPS, 

CMORPH, PERSIANN-CDR, CMAP, and GPCP), for the years 1998 – 2012 at monthly and yearly 

timescales, revealed that the above-mentioned products are successful in replicating the rainfall 

patterns, except for the high rainfall amounts from the orographic types (elevation of 2500 and 

above). However, CMORPH, CHIRPS, and TRMM performed well, with TRMM showing the best 

comparatively the best performance. Table 2. 3 summarize the findings of the above-mentioned 

studies. 

Table 2. 3 Summary of the performance satellite precipitation products in East Africa (regional scale 

Satellites Best Performance Study 

GPCP, CMAP, and TRMM-3B43), GPCP, 
TRMM-3B42, TAMSAT, and CMORPH  

TRMM-3B43, CMAP, CMORPH, 
TAMSAT and TRMM-3B42 

Dinku et al., 
(2007) 

AR2C, CMORPH, and TRMM 3B42 None 
Dinku et al., 
(2011) 

TMPA 3B42 and CMORPH Both over equatorial region only 
Habib, et al., 
(2012) 

(CPC RFE, CMORPH, GSMaP, TMPA 3B42, 
PERSIANN, TAMSAT TARCAT) 

TMPA 3B42 
Cattani et al., 
(2016) 

TAMSAT, TARCAT, CHIRPS, CMORPH, 
PERSIANN-CDR, CMAP, and GPCP 

TRMM, CHIRPS, and CMORPH. 
TRMM is the best 

Kimani et al., 
(2017) 
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2.5.4 Performance of satellite precipitation products in Eastern Nile Basin Countries (local scale) 

Number of studies were conducted in the 4 Eastern Nile Basin countries to assess the reliability 

of satellite precipitation products, most of them were in Ethiopia, with fewer number in the rest 

3 countries Egypt, Sudan, and South Sudan. The findings of number of them are reviewed in the 

following section. 

 

I. Egypt 

In Egypt, Nashwan et al., (2019) explored the capability of the high resolution precipitation 

products, GSMaP, IMERG, and CHIRPS, in detecting and estimating the daily rainfall amounts for 

the period March 2014 to May 2018. The results indicated that, generally, CHIRPS succussed in 

detecting the amount of rainfall, and IMERG showed the worst performance. However, IMERG 

was able to detect the occurrence of rainfall better, with showing the spatial variability of rainfall 

during flood caused by heavy rain event.  

Another study was conducted by Nashwan et al., (2020) in which the performance of 5 high 

resolution satellite_gauge calibrated rainfall datasets in the arid region evaluated, namely; ARC2, 

CHIRPSv2, GSMaPv6, TAMSATv3 and PERSIANN-CCS. The comparison was conducted against rain-

gauge observations for the years 2003 - 2018. The results of the study showed that all datasets 

performed poorly in detecting rainfall, with better performance of CHIRPS in capturing dry days 

(rainfall < 1 mm/day) - which is similar to the previously mentioned study (Nashwan et al., 2019) 

-, and better performance of ARC and GSMaP in estimating higher intensities (rainfall ≥ 1 

mm/day), however, high number of false detections was observed. Comparatively, TAMSAT 

appeared to have the worst performance among the group, while GSMaP recorded the best 

performance in the arid area of Egypt. 

More recently, Roushdi, (2020) evaluated 12 satellite rainfall datasets (TRMM, ARC, RFE, Chirps, 

CMORPH. CPC, CRU, GPCC, GPCP_1DD, GPCP, PERSIANN and TAMSAT), in 8 locations in Egypt for 

18 years. Ground stations records (annual and monthly) were considered for comparison. The 

performance of RFE, GPCC, CPC, and CHIRPS were found to have better at different locations 

compared to the other datasets. Lately, Gado, (2023) published a study that focus on exploring 

the reliability of 4 commonly used satellites; namely, PERSIANN-CDR, TRMM3B42v7, IMERG-F, 

GSMaP_Gauge compared to 23 ground observations stations. GSMaP-Gauge showed a 

substantial ability in capturing the occurrence and estimating the amount of rainfall. 

II. Sudan 

The TRMM 3B42v7 and CHIRPS were evaluated by Abdelmoneim et al., (2020) over the Blue Nile 

Basin in Sudan using daily and monthly records at Khartoum and Eldeim station for the years 1998 

– 2007. Both products showed good agreement compared to ground stations observations. 
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Moreover, TRMM 3B42V7 outperforms CHIRPS in detecting rainfall events. Moreover, Abd 

Elhamid et al., (2020) assessed the performance of TRMM and RFE rainfall products in using 

ground gauge based rainfall measurements along the Blue Nile River sub-basin in Sudan fot the 

years 2001– 2016.  Both products performed well. 

 

 

III. South Sudan 

Basheer & Elagib, (2019) explored the performance of GPCC 7.0, CHIRPS, PERSIANN-CDR, ARC2, 

and MSWEP 2.0 satellite rainfall products. These products were compared to the records of 5 

ground stations for the years 1983 – 2010. GPCC 7.0 showed the best performance on monthly 

and annual scales, followed by CHIRPS. Also, GPCC 7.0 and then PERSIANN-CDR outperforms with 

regards to detecting the annual rainfall. The monthly variability was detected similarly by GPCC 

7.0 and MSWEP 2.0, while ARC2 followed by GPCC 7.0 succussed in detecting the maximum 

monthly precipitation.  

IV. Ethiopia 

Large number of studies which validated and evaluated the performance of the rainfall satellite 

datasets were conducted in different Ethiopian regions. Here we focus on the Upper Blue Nile. In 

Upper Blue Nile region, Ayehu et al., (2018)  and Belete et al., (2020) conducted studies in which 

the performance of CHIRPS, TAMSAT 3, and ARC2 for the period 2000 – 2012, and the CHIRPS, 

TAMSAT v2 and v3, and TRMM 3B43v7 were assessed respectively. In both studies, CHIRPS 

exhibited the best performance in rainfall detection regardless of elevation, followed by TAMSAT. 

ARC2 showed poor performance, while TRMM 3B43v7 performed well over mountainous areas. 

Moreover, Abdelwares et al., (2020) compared TRMM, CRU, and GPCC datasets to gound stations 

records, at which the GPCC exibited to have the closest agreement and best performance with 

gound readings, followed by TRMM, while CRU showed poor agreement with gauge observations. 

Lastly, Lakew et al., (2020) evaluated 5 products (CMORPH, TRMM 3B42v7, TMPA, ERA-Interim, 

GPCC, MSWEP) between 2000 and 2012, in which the MSWEP showed the best performance. 

Table 2. 4 summarize the findings of the above-mentioned studies. 

 

 

 

 

 

 



26 
 

Table 2. 4 Summary of the performance of satellite precipitation products in Eastern Nile Basin Countries (local scale) 

Location Satellites Best Performance Study 

Egypt 

GSMaP, IMERG, and CHIRPS CHIRPS 
Nashwan et al., 
(2019) 

ARC2, CHIRPS v2.0, GSMaP (v. 6), 
TAMSAT (v. 3) and PERSIANN-CCS 

Generally GSMaP, and 
CHIRPS for dry events 

Nashwan et al., 
(2020) 

TRMM, ARC, RFE, Chirps, 
CMORPH. CPC, CRU, GPCC, 
GPCP_1DD, GPCP, PERSIANN and 
TAMSAT 

RFE, GPCC, CPC, and 
CHIRPS 

Roushdi, (2020) 

PERSIANN-CDR, TRMM3B42v7, 
IMERG-F, GSMaP_Gauge 

GSMaP_Gauge Gado, (2023) 

Sudan 
TRMM 3B42v7 and CHIRPS TRMM 3B42v7 

Abdelmoneim et al., 
(2020) 

TRMM and RFE Both 
Abd Elhamid et al., 
(2020) 

South 
Sudan 

GPCC 7.0, CHIRPS, PERSIANN-
CDR, ARC2, and MSWEP 2.0 

Monthly: GPCC 7.0 
&CHIRPS 

Annual: GPCC 7.0 and 
then PERSIANN-CDR 

Basheer & Elagib, 
(2019) 

Ethiopia 

CHIRPS, TAMSAT 3, and ARC2 
CHIRPS followed by 

TAMSAT 
Ayehu et al., (2018)   

CHIRPS, TAMSAT v2 and v3, and 
TRMM 3B43v7 

CHIRPS followed by 
TAMSAT, and TRMM 

for mountanious area 
Belete et al., (2020) 

TRMM, CRU, and GPCC GPCC 
Abdelwares et al., 
(2020) 

CMORPH, TRMM 3B42v7, TMPA, 
ERA-Interim, GPCC, MSWEP 

MSWEP Akew et al., (2020) 

 

2.6 Data Quality 

2.6.1 Possible problems in the collected rainfall data (satellite and ground station data) 

The possible problems of rainfall data arise from cross-system inconsistencies, unstructured data, 

inconsistent formatting, duplication, inaccuracy and incompleteness due to observer’s error 

and/or meteorological instrument problem in case of manned and automatic stations. Let us see 

station data quality problems first. There are Outliers, missing, non-numeric representations, and 

lack of appropriate metadata due to observer error or instrumental source of errors. When it 

comes to satellite data quality problem, one of the causes is cloud cover, resolution of the satellite 

data and so on. Therefore, before carrying out any kind of rainfall analysis, the satellite and/or 

ground observation data need to be checked whether the missing values are there or not, number 
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of missing values, the outliers and so forth in the time series. That is important for identification 

of precipitation discontinuity and inconsistency as the non-climatic noises caused by the data 

impurity which leads to wrong results and conclusion unless it is quality controlled before the 

analysis (Brunetti et al., 2006; Informatics et al., 2017; Longobardi & Villani, 2010).  

The challenges to the availability of climate data arise due to scanty and/or deteriorating 

observation networks and insufficient technical capacities by the National Meteorological and 

Hydrological Services (NMHS) (Dinku, 2019). He suggested that overcoming the challenge would 

require addressing these issues through blending satellite-based climate data estimates with 

those sparce ground meteorological station datasets. However, if the raw station data is blended 

with satellite data without addressing the issues of data quality control, that could be gaps, 

outliers and any erroneous sets, the quality of the product further decline. Therefore, the 

reference historical station data should be cleaned from such impurities beforehand (Amada et 

al., 2015; Branisavljevi et al., 2009; Climate & Centre, n.d.; Estévez et al., 2022; J A du Plessis, 

2021; Vejen et al., 2002).  

2.6.2 Rainfall data quality check mechanisms 

2.6.2.1 Satellite data 

The satellite data quality issue is associated to resolution, cloud condition and time steps that the 

data is collected in. How accurate or inaccurate the satellite data is evaluated with reference to 

observed station datasets. There are numerous satellite based rainfall data which is 

recommended to be used after bias correcting the raw data using statistical metrics (du Plessis, 

2021). The quality control method consists of three consecutive steps: basic, absolute, and 

relative quality control processes. The latter step compares data from neighboring stations taking 

into account their proximity, height difference, and correlation, leading to a complete evaluation 

of each daily value (Estévez et al., 2022). 

2.6.2.2 Ground observation data 

The ground stations’ data sources referents to both manually performed observations and 

automatically generated electronical observations from unmanned stations. The collected data 

may get erroneous in both cases. As a result, quality controlling (QC) is the essential task 

throughout data processing cycles. To be confident on the data, carrying out the QC activity at 

the station level as it is real time, is advantageous to avoid ingestion of erroneous data to data 

archive and potentially deviate the message of the products. Depending on the structure of the 

National Meteorological and Hydrological Service (NMHS), QC may be performed by a central unit 

or at the regional level following a consistent, well-defined NMHS-wide process. The important 

point is that the final QC should be carried out using a uniform procedure, with consistent tools 

and approaches, prior to final archival. So, the QC tests needed for data that has taken from 

climate database should be comprehensive, though not exhaustive as it is carried out after ingest, 

and as such, are often referred to as delayed mode QC. Five types of tests can be used; namely, 
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constraint tests, consistency tests, Heuristic tests, data provision tests, and statistical tests (WMO, 

2021). 

2.6.3 Erroneous data correction mechanisms 

The missing data can be filled using different techniques. In addition to the missing data, the 

outlier data trimming with presented lower and upper thresholds is what lead to data correction. 

There are many statistical precipitation gap filling techniques all over the world. However, for the 

sake of simplicity, experts prefer the following seven simple techniques practiced in particular 

case of Ethiopia. These are: Simple arithmetic means (SAM) (Devi et al., n.d.; Kashani & 

Dinpashoh, 2014; Zainuri & Muda, 2015) given that the missing values are not greater than 10%, 

normal ratio method (NRM) (Zainuri & Muda, 2015), correlation coefficient weighing (CCW) 

(Fadhilah et al., 2015), inverse distance weighting (IDW) (Ahrens, 2006), multiple linear regression 

(MLR) (Le, 2020), empirical quantile mapping (EQM) (Precipitation & Series, 2020), and empirical 

quantile mapping plus (EQM+) (Chinasho et al., 2021).  
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3 Material and Methods 

3.1 General description 

The methodology of this study consists of number of steps. Firstly, the different rainfall satellite 

datasets considered in the study were selected, followed by downloading and correcting this data 

before analysis. Subsequently, set of techniques were undertaken for the analysis of these rainfall 

datasets, to finally come up with informative description of the rainfall trends in the Eastern Nile 

Basin. The study considers the four subbasins of the Eastern Nile Basin; namely, the Blue Nile 

basin, Baro-Akobo-Sobat basin, Tekeze-Setit-Atbara basin, and Main Nile Basins. However, to 

follow the physical climatology of the Main Nile and reduce uncertainty in the analysis, the Main 

Nile sub-basin was further divided into the Upper Main Nile basin and the Lower Main Nile basin. 

Historical rainfall data of the years 1990 – 2020 was considered for the analysis. 

According to the information mentioned in section 2.4 and 2.5, four satellite datasets were 

selected to conduct rainfall trends analysis in the Eastern Nile Basin. The selection was made 

based on the spatial coverage, data record length, temporal and spatial resolution of the datasets, 

the type of data input (calibrated with gauge data or not), as well as the performance of products 

observed in previous studies for Eastern Nile Basin region and countries. In addition to the 4 

satellite/satellite-gauge blended products, GPCC is also considered as it provides gridded data 

from ground stations with acceptable resolution. The selected products are: 

1. Climate Hazards Group InfraRed Precipitation with Station Data (CHIRPS) 

The Climate Hazards Group InfraRed Precipitation with Station (CHIRPS) dataset is a high-

resolution rainfall dataset that combines satellite observations blended with ground station data, 

covering  a wide area (50°S - 50°N), with a long record starting from 1981 until now. By integrating 

multiple data sources, CHIRPS enhances the accuracy and reliability of its rainfall data, to provide 

reliable precipitation estimates, so as it is widely used in climate research, hydrology, agriculture, 

and disaster management. CHIRPS provides high-resolution rainfall estimates at a spatial 

resolution of approximately 0.05 degrees (about 5 km) globally. This fine spatial resolution allows 

for detailed analysis of precipitation patterns at local and regional scales. Moreover, it offers daily 

precipitation estimates, and this is valuable for studying short-term weather events, seasonal 

patterns, and long-term climate trends. The CHIRPS dataset undergoes rigorous validation 

processes to ensure the accuracy of its precipitation estimates. Number of validation studies were 

conducted to compare CHIRPS data with ground-based observations and other satellite-derived 

datasets to assess its performance in capturing actual rainfall patterns.  

2. African Rainfall Climatology Version2 (ARC2) 

The African Rainfall Climatology Version2 is a high-resolution gridded rainfall dataset developed 

specifically for Africa. It provides daily estimates of precipitation at a spatial resolution of 0.1 

degrees (approximately 10 km) across the continent. ARC2 combines satellite data, ground station 
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observations, and numerical weather prediction models to generate rainfall information for 

various applications, including agriculture, water resource management, and disaster risk 

reduction in Africa. This dataset also provides a long record (1983 – present) of daily rainfall data. 

3. Precipitation Estimation from Remotely Sensed Information using Artificial Neural 

Networks–Climate Data Record (PERSIANN-CDR-CCS) 

Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks–

Climate Data Record (PERSIANN-CDR) Satellite and gauge data is one of the significant products 

that have been commonly used globally. It allows users to access and download spatiotemporal 

statistics precipitation data from 1983 up to Present, uses balanced network function 

classification/approximation procedures to compute an estimate of rainfall rate at about 0.25° x 

0.25° (27 km) pixel resolution. It is a long-term global rainfall dataset that leverages satellite data 

and machine learning techniques to estimate precipitation on a smallest temporal resolution of 

daily basis, which covers 60°S to 60°N degree, with high resolution and consistency in long-term 

records. PERSIANN-CDR is widely used for climate studies, hydrological modeling, and monitoring 

of precipitation trends over extended time periods. 

4. Tropical Applications of Meteorology using Satellite Data (TAMSAT) 

TAMSAT is a research project that produces high-quality rainfall estimates for tropical regions, 

with a focus on Africa. The TAMSAT dataset combines satellite data, climate reanalysis products, 

and ground station observations to generate daily and pentad (5-day) precipitation estimates at 

a spatial resolution of approximately 4 km over Africa, and a record extending from 1983 until 

now. TAMSAT data is utilized in various applications; such as famine early warning, drought 

insurance, agricultural decision support, and climate impact assessments. 

5. Global Precipitation Climatology Centre (GPCC). 

GPCC is an international initiative that produces global precipitation datasets based on a gridding 

the rain gauge observations, covering the area 90°S - 90°N, with a long record starting from 1891 

until present. The GPCC dataset offers monthly and daily precipitation estimates at various spatial 

resolutions of 0.1 degrees to 0.25 degrees respectively. GPCC data is widely used in climate 

research, water resource management, and climate impact assessments on a global scale. Table 

3. 1 Summary of selected satellites characteristics shows summary of the selected rainfall 

products’ characteristics. 
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Table 3. 1 Summary of selected satellites characteristics 

Dataset 
Spatial 

Resolution 
Temporal 

Resolution 
Length of 

Record 
Type of Data 

CHIRPS 
0.05° (5.5 

km) 

Daily 

1981-
present 

Satellite and ground data 

ARC2 
0.1° (11 

km) 
1983-

present 
Satellite, ground data, and weather 
prediction models 

PERSIANN-
CDR 

0.25° (27 
km) 

1983-
present 

satellite data and machine learning 
techniques 

TAMAST 
0.0375° (4 

km) 
1983-

present 
satellite data, climate reanalysis 
products, and ground data 

GPCC 
0.25 

(27km) 
1891 - 

present 
Gridding of ground data 

 

3.2 Data acquisition and preprocessing 

Daily rainfall data of CHIRPS, ARC2, and TAMSAT products was acquired from the Climate Data 

Tool (CDT) platform that is based on the R programming language. PERSIANN-CDR rainfall data 

was acquired from the Center for Hydrometeorology and Remote Sensing (CHRS) website 

(https://chrs.web.uci.edu), also using daily basis. Similarly, the GPCC data was downloaded from 

NOAA Physical Science Laboratory website (https://psl.noaa.gov/data/gridded/data.gpcc.html) in 

daily temporal resolution. The daily rainfall data of the years between 1990 to 2020 was 

downloaded using the extents (geographic coordinates or shape file) of the Eastern Nile Basin. 

During the reprocessing and analysis, the boundaries of the 5 subbasins were considered. 

All data was downloaded in NetCDF format as it is the most suitable format for dealing with 

climate data of long records, due to its ability to analyze large and complex datasets. Moreover, 

NetCDF files are self-describing, meaning they include metadata along with the actual data.  

Simple data quality check was conducted. The downloaded data of the 5 products did not require 

a lot of reprocessing and correction as it was already reprocessed by the providers. Q/ArcGIS, 

Climate Data Tool (CDT), as well as R and Python codes were used for the initial presentation and 

reprocessing of the data; i.e. visualization, clipping to subbasins level, combining of separate daily 

data into one file for each year, and the conversion to GeoTiff (.tiff) or Comma-separated values 

(.csv) formats and vice versa. GPCC and PERSIANN-CDR have shown missing (no data) values and 

false zero records within their daily records. The false zero was corrected using the Climate Data 

Tool (CDT), while the gap was filled by using either the rainfall average of the previous and next 

days, or the average of the same day from the available other years in case of many consecutive 

https://chrs.web.uci.edu/
https://psl.noaa.gov/data/gridded/data.gpcc.html
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missing days. Moreover, PERSIANN-CDR has shown high number of negative values (-99) 

representing the no data values, especially in the first 10 years. Those values were converted into 

no data using a Linux code, before filling them using the previously mentioned method. 

3.3 Tools and software packages 

3.3.1 Q/ArcGIS 

GIS tools were utilized for the rainfall analysis as it integrates the spatial data with the 

precipitation records. They were used for data visualization over the 5 subbasins, and thematic 

maps to display rainfall patterns and distribution across different Eastern Nile Basin regions were 

prepared is different spatial and temporal scales. Additionally, the Multi-band Zonal Statistics tool 

of QGIS was used to calculate the statistical characteristics of the historical rainfall of the different 

5 products over the study area. 

3.3.2 Climate Data Tool (CDT) 

The Climate Data Tool (CDT) is an open-source R package developed as part of the Enhancing 

National Climate Services (ENACTS) initiative by the International Research Institute for Climate 

and Society (IRI). It is a powerful tool that provides researchers, scientists, and decision-makers 

with access to a wide range of climate datasets, and allows for analysis and visualization. CDT 

offers a user-friendly interface and a suite of tools for processing, analyzing, and interpreting 

climate data, including rainfall datasets. The tool is designed to facilitate the exploration of 

historical climate information, trends, and variability to support research on climate change, 

weather patterns, and environmental impacts. 

In this study, CDT was used to download (in NetCDF format) and/or analyze the satellite historical 

rainfall data. Some of the rainfall products data was both downloaded and analyzed using CDT 

(CHIRPS, ARC2, and TAMSAT), and the rest were downloaded from other sources and then 

imported to CDT for the analysis. The tool is very powerful in dealing with the NetCDF format 

files; therefore, it was highly used for combining, splitting, clipping, aggregating, and converting 

of the different rainfall products’ NetCDF data into other formats (GeoTiff (.tiff) and Comma-

separated values (.csv)). 

The tool also provided an interactive visualization tool for displaying rainfall data in maps, graphs, 

and time series plots, with customizing the visual representation of data layers, apply color scales, 

and overlay multiple datasets to compare and analyze rainfall patterns.  It was used for visualizing 

the spatial distribution of rainfall in the shape of maps. As the tool consists of a wide range of 

statistical and analytical tools for processing data, it assisted in calculating annual and monthly 

averages, anomalies, seasonal variations, and trends, and in performing spatial analysis using the 

time series of the different rainfall datasets. 

Furthermore, the CDT includes predefined climate indices such as the Standardized Precipitation 

Index (SPI), Palmer Drought Severity Index (PDSI), and Rainfall Anomaly Index (RAI) that can be 
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calculated from rainfall data to assess drought conditions, precipitation anomalies, and climate 

variability. Here it was used for the calculation of Standardized Precipitation Index (SPI) for the 

different products. 

3.3.3 Programming languages 

Programming languages; R, Python, and Linux were used for performing number of activities as 

they provide a wide range of tools and libraries that can be used for data analysis and plotting. R 

was used for producing rainfall spatial distribution maps, as well as operating the CDT tool. Python 

was used to read rainfall data from CSV format files, perform statistical analysis, and create plots 

like the box plots of the different satellites’ rainfall time series. Moreover, Linux was used for 

splitting and combining the NetCDF files, as well as filling the missing and correcting the negative 

values. 

3.3.4 Easy Fit Software 

Easy Fit Software was used to fit the best distribution of the rainfall time series of the different 

products, including its parameters, and to plot the fitted rainfall distribution. 

3.4 Rainfall analysis steps 

In this study, the CHIRPS rainfall data was selected to be used as a reference for the assessment 

of the other satellite rainfall products performance, to fill the gap that is caused by the data 

scarcity problem in the Eastern Nile countries. CHIRPS delivers reliable and complete data up to 

present, that is blended with ground data, and showed good performance, good precision, and 

relatively little bias over east Africa compared to ground observations. The historical rainfall 

records of the five products were analyzed over the five Eastern Nile sub-basins (Baro-Akobo-

Sobat, Blue Nile, Tekeze-Setit-Atbara, Upper Main Nile and Lower Main Nile).  

The rainfall analysis undertaken in this study consists of set of analysis techniques. Firstly, the 

spatial distribution over the whole Eastern Nile Basin area was produced to understand the 

spatio-temporal variations of rainfall, and have initial insights about the trends and changes taking 

into consideration the observations of the different rainfall products.  

For the rest of the analysis, each subbasin was analyzed separately to be able to detect the 

differences in their satellite observations and rainfall patterns, and to capture the various physical 

and climate conditions associated with each of them. Firstly, simple statistical analysis was 

conducted for the daily data to calculate the daily mean and standard deviation over each 

subbasin (produced from the rainfall values of subbasin cells). This was done using the Multi-band 

Zonal Statistics tool of QGIS, and the results were presented in GeoPackage format (.gpkg) and 

Comma-separated values format (.csv). The resultant time series of each rainfall product for each 

subbasin was considered for the analysis. The historical rainfall analysis included calculating and 

plotting box plots, scatter plots, rainfall trends, rainfall anomalies, rainfall frequency distribution, 
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rainfall seasonality, as well as calculating and plotting the Standard Precipitation Index (SPI). 

Description of these techniques is shown below. 

3.4.1 Spatial distribution 

Rainfall distribution refers to the spatial and temporal patterns of rainfall in a particular region. 

This can include the amount of rainfall and the variability of rainfall over time. Different satellite 

datasets have varying spatial resolutions, which can affect their ability to accurately capture 

localized rainfall patterns, and the higher resolution datasets may provide more detailed 

information on rainfall distribution. In this study, the spatial distribution of rainfall over the 

Eastern Nile Basin was produced using 10 years average, considering the different 5 rainfall 

products. This was performed using the Climate Data Tool (CDT).  

3.4.2 Box plots 

Box plots provide a simple yet powerful tool for comparing the performance of different satellite 

rainfall datasets and identifying patterns or discrepancies in their estimates. They were used to 

provide graphical representations of the distribution of the different rainfall dataset of each 

subbasin separately, in the shape of a visual summary of key statistical measures such as the 

mean, quartiles, and outliers. Annual rainfall (annual sum) data was used for plotting the box plots 

using a Python code. The plot of each rainfall satellite data consists of a box that represents the 

interquartile range (IQR) of the data, i.e. the middle 50% of the ranked data, - and it is drawn from 

the lower quartile value to the upper quartile value, which are the 25th until 75th percentiles -, 

with a line inside the box representing the mean. Whiskers extend from the box to show the range 

of the data (min to max), and any points outside of the whiskers are considered outliers. 

The separate box plots of the 5 satellite products were plotted next to each other to be able to 

compare them. By looking at the means, quartiles, and ranges of the datasets, the differences in 

the satellites’ performance were assessed to determine their accuracy and consistency. 

Furthermore, the box plots also helped in identifying the outliers in the data, which indicates any 

errors or inconsistencies in the satellite rainfall estimates. Comparison of the number and 

distribution of the outliers also give insights into the quality and reliability of the different 

datasets. 

3.4.3 Scatter plots 

Scatter plots are graphical representations that provides visual and quantitative measure to 

assess the relationship between two variables. In the scatter plot, each data point is represented 

by a point on the graph, with one variable plotted on the x-axis and the other variable plotted on 

the y-axis. In our case, annual data was used to plot the scatter plots, and used to visualize the 

correlation and evaluate the performance of each of the rainfall products compared to CHIRPS, 

in order to identify agreement, biases, or inconsistencies. 
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By examining the scatter plots, we assessed how well the satellite rainfall estimates match the 

CHIRPS data. The first metric that has been considered for the analysis is the correlation 

coefficient (R) and regression line statistical measures, which were calculated to quantify the 

relationship between the 2 datasets. A high correlation coefficient (close to 1) indicates a strong 

positive relationship, while a low correlation coefficient suggests a weak or no relationship 

between the datasets. In other words, a strong positive correlation between the CHIRPS and 

satellite indicates that the satellite estimates are accurate and reliable compared to CHIRPS. On 

the other hand, a weak or negative correlation may suggest discrepancies in the satellite rainfall 

estimates. Moreover, the Bias Ratio (B) has also been used to check the level of agreement 

between CHIRPS and other products. This metric detects the overestimation or underestimation 

of rainfall. Having B=1 means there is perfect agreement between the 2 datasets, while having 

values >1 or <1 indicates an overestimation or underestimation respectively. Another metric that 

has also been used is the Coefficient of Variation (CV). This metric assesses the dispersion or 

relative variability of data compared to a reference. Higher values of CV demonstrate greater 

variability, and thus, poor performance. The last metric for assessing the performance of rainfall 

products is the Root Mean Square Error (RMSE) that detects the differences and match between 

each 2 datasets. The lower the RMSE, the higher the match between any dataset compared to 

the reference (CHIRPS). 

3.4.4 Rainfall trend 

The rainfall trend plots are used to graphically represent and help to visualize the changes in 

rainfall patterns over specific time period. In this study, the rainfall trends of the different 5 rainfall 

products were plotted over the 31 years for each subbasin of the Eastern Nile Basin. The Climate 

Data Tool (CDT) as well as excel were used for this purpose.  

The annual rainfall data (annual sum) were plotted against time to show overall trend in rainfall 

over time. A trend line was added to visualize the pattern of change. The rainfall trend of each 

product was plotted in a separate plot for better visualization; however, they were put side by 

side for comparing, identifying different patterns, and detecting any discrepancies or 

inconsistencies between them. The trendline in addition to its equation were added to give a 

quantitative description and comparison of the rainfall trend with its direction. 

3.4.5 Rainfall anomalies 

The rainfall anomalies plots show the deviation of rainfall from a long-term average or climatology 

mean. These plots are commonly used in meteorology and climatology to visualize the spatial and 

temporal variability of rainfall patterns. Annual time scale (rainfall annual sum) was used for the 

calculation of the anomalies. Firstly, the 31 years average of rainfall is calculated for each dataset 

of each subbasin. Then, rainfall value of each year from the same time period is subtracted from 

the long-term average to obtain the anomaly values.  Positive anomalies indicate above-average 

rainfall, while negative anomalies indicate below-average rainfall. The typical color scale was used 
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to represent the magnitude of anomalies, with warmer blue color indicating positive anomalies 

and red color indicating negative anomalies. Another presentation of the anomalies can be in the 

shape of spatial distribution, that can be displayed on a map to show how rainfall patterns vary 

across different regions. 

The anomalies produced from each satellite data of each subbasin were then compared to inspect 

how well each dataset captures the variability in rainfall patterns. Comparison can also assess in 

determining which dataset provides more accurate and reliable estimates of rainfall anomalies. 

3.4.6 Standardized Precipitation Index (SPI) 

The Standardized Precipitation Index (SPI) is a widely used index for characterizing meteorological 

drought on various timescales. There are 1-month, 2-month, 3-month, 6-month and 12-month 

SPI estimation time scales for different purposes. For example, the 3-months SPI is used for 

meteorological purposes, 6-month SPI is used for agricultural purposes, while the 12-month SPI 

is used for hydrological purposes (Bussay et al., 1998; Morid et al., 2006; Szalai and Szinell, 2000). 

The SPI is obtained by calculating a uniform likelihood for precipitation deficit (see equation (3.1) 

below) (Patel et al., 2007; McRoberts et al., 2012). Hence, the 12-month SPI is used in this study, 

as it provides a longer-term view of precipitation conditions and is useful for assessing drought or 

wet conditions that develop over an entire year. 

𝑺𝑷𝑰𝒊𝒋 =  
(𝑿𝒊𝒋−𝝁𝒊𝒋)

𝜶𝒊𝒋
… … … … … … … … … … … … … … … … … … … … … … … … … … … . . (𝑒𝑞. 3.1)  

Where Xij is the total rainfall for the ith month at the jth period, SPIij represents an ith month at the jth period, 

and µij and αij stand for the ith month's long-term mean and standard deviation, respectively, on the jth 

timeframe of the chosen period.  

SPI has different output values for classifying drought ranging from −2.0 to 2.0 as shown in Table 

3. 2 (Zhen et al., 2018). In this study, the Standardized Precipitation Index (SPI) was plotted using 

the Climate Data Tool (CDT) and used for measuring droughts in the Eastern Nile basin over the 

past 31 years, based on the CHIRPS, ARC2, PERSIANN-CDR, TAMSAT and GPCC datasets. 

Table 3. 2 Classification of drought based on the distribution of the SPI index (Zhen et al., 2018) 

SPI Value  Interpretation 

>2.0  Extremely wet 

1.5 to 1.99  Severely wet 

1.0 to 1.49  Moderately wet 

0.99 to -0.99  Near normal 

-1.0 to -1.49  Moderately dry 

-1.5 to -1.99  Severely dry 

<-2.0  Extremely dry 
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To compare the performance of different satellite rainfall datasets considering SPI, calculations 

were applied to each dataset and then the resulting SPI values were plotted next to each other. 

By assessing the degree of agreement between the datasets in terms of the SPI values, the 

consistency and reliability of the drought classification provided by the different satellite datasets 

were assessed. This comparison can aid in understanding the strengths and weaknesses of each 

dataset when it comes to capturing precipitation variability and drought conditions. 

3.4.7 Rainfall frequency distribution 

The probability and frequency of rainfall data is important to be able to determine the expected 

rainfall, which is useful to prevent extreme events. The best fit probability distribution of the 

CHIRPS, ARC2, PERSIANN-CDR, TAMSAT and GPCC datasets for the 5 subbasins was identified 

using Easy Fit software. It determines the best fit distribution visually by comparing the satellite 

data and the theoretical (fitted) distribution graphs. This is done using 3 goodness of fit tests; 

namely, Kolmogrov Smirnov, Anderson Darling, and Chi-squared tests. 

3.4.8 Seasonality of rainfall 

For this analysis, the 31 years daily rainfall data of the 5 datasets was aggregated into monthly 

data (monthly sum) for each year. Each month average of the resultant monthly values was then 

calculated considering the full time period (31 years). The monthly rainfall plots for each dataset 

of each subbasin were then generated, with time (months) on the X-axis and monthly rainfall on 

the Y-axis, which provided a visual representation of the rainfall patterns captured by each dataset 

over time. Comparing the performance of different satellite rainfall datasets using monthly 

rainfall plots is then used to provide valuable comprehensive understanding of how the different 

rainfall datasets perform in capturing seasonal or monthly rainfall variations over the Eastern Nile 

Basin. That is done by assessing the similarities and differences in the magnitude and variability 

of rainfall between the datasets for each season or month. 

Figure 3.1 below illustrates the flowchart for the methodology of this study. 
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Figure 3.1 Methodology flowchart 
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4 Results and Analysis 

4.1 General description 

In this chapter, the results of the different analysis techniques are described and discussed to 

come up with comprehensive understanding of the historical rainfall of the Eastern Nile Basin. 

General overview about the rainfall intensities and distribution over the basin is provided first.  

That is followed by detailed analysis of each subbasin separately, as the study area consists of 

various physical and climate conditions. 

4.1.1 Rainfall spatial distribution 

Figure 4.1 below shows the spatial distribution, as well as the temporal patterns of rainfall over 

the Eastern Nile Basin area. The graph gives good indication about the rainfall amounts and 

variability of each subbasin. Generally looking at the estimates of the 5 rainfall products, the basin 

received amounts of annual rainfall ranging between 0 mm rainfall at the northern part of the 

basin (north Sudan and Egypt) to around 1500 mm at the south-eastern area of the basin (the 

highlands of Ethiopia and parts of South Sudan). Blue Nile (BN) and Baro-Akobo-Sobat (BAS) 

received the highest rainfall intensity; varying between 700 mm to 1500 mm, and 400 mm to 

1400 mm respectively, followed by Tekeze-Setit-Atbara (TSA) that received low annual rainfall of 

200 mm at its northern part, and high rainfall that reaches up to 1200 mm at the southern part 

of the subbasin. On the other hand, the Upper and Lower Main Nile received low to very low 

intensities of rainfall. Annual rainfall of the Upper Main Nile ranged between 0 mm to 250 mm, 

while the Lower Main Nile showed approximately zero rainfall. 

During the 1st 10 years of the study period (1990-1999), GPCC and PERSIANN-CDR demonstrated 

higher annual rainfall intensity compared to the other 3 satellite products (CHIRPS, ARC2, and 

TAMAT), especially at the south-eastern part of the basin, and that is also similar for the 2nd 10 

years of the study period. On the other hand, the last 10 years (2011-2020) showed highest 

rainfall estimates recorded by CHIRPS and TAMSAT, followed by PERSIANN-CDR and GPCC. ARC2 

presented the lowest estimation for the annual rainfall over the whole study period. 

Comparing the temporal patterns recorded by each rainfall product during the 31 years, the 

spatial distribution of CHIRPS and TAMSAT data did not show significant change in rainfall over 

time. GPCC and PERSIANN-CDR showed slightly decreasing rainfall pattern. On the other hand, 

ARC2 demonstrated rainfall estimate with decreasing pattern between the 1st and 2nd 10 years, 

but increasing again between the 2nd and 3rd 10 years. 

The above-mentioned differences can be attributed to the different spatial resolution of the 

rainfall products, as well as the algorithms used and the assumptions considered for each satellite 

dataset. 
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Figure 4.1 Spatial distribution of rainfall over the Eastern Nile Basin 

4.2 Baro-Akobo-Sobat (BAS) 

4.2.1 Box Plots 

To compare the annual rainfall distribution of BAS subbasin and identify the reliability, 

consistency, and differences between the rainfall products, we started the analysis by plotting the 

box plots. Looking at Figure 4.2, the 5 rainfall products showed different distribution of rainfall 

which demonstrates uncertainty in rainfall estimation. All products showed close values of central 

tendency (median), except ARC2 that presented lower rainfall. CHIRPS and TAMSAT showed the 

best performance and highest consistency among the datasets, as they presented low 

interquartile range (IQR), which means lower variability, with small range of rainfall values (min 

and max from whisker lines). These are followed by PERSIANN-CDR. Lastly, GPCC and ARC2 

demonstrated greater variability, thus, they can be considered unreliable in estimating annual 

rainfall. All satellites did not show outliers which means low errors or discrepancy. 
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Figure 4.2 Box plots of BAS subbasin 

4.2.2 Scatter Plots 

As CHIRPS is found to be the best performing rainfall dataset, as well as the information 

mentioned in section 3.4.3 of this report, it has been considered as a reference to assess the 

performance of the other rainfall products. Figure 4.3 below show the scatter plots that compare 

CHIRPS with ARC2, PERSIANN-CDR, TAMSAT, and GPCC, and assess how well the satellite rainfall 

estimates match the CHIRPS data. Although the coefficient of determination (R2) of TAMSAT = 0.6, 

which is not considered a good value, it demonstrated the highest fit with CHIRPS, followed by 

PERSIANN-CDR and ARC2 (R2 = 0.48 and 0.41 respectively. Lastly, GPCC presented very low fit with 

CHIRPS with R2 of almost zero.  
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Figure 4.3 Scatter plots of BAS subbasin 

Furthermore, the Correlation (R), Bias ratio (B), Coefficient of Variation (CV), and the Root Mean 

Square Error (RMSE) were also calculated to quantitatively test the performance of ARC2, 

PERSIANN-CDR, TAMSAT, and GPCC compared to CHIRPS. The results are shown in Table 4.1 

below. Looking at R and RMSE, TAMSAT has shown the strongest correlation and match to CHIRPS 

followed by PERSIANN-CDR and ARC2, while GPCC was found to have the weakest relationship. 

Moreover, also TAMSAT and PERSIANN-CDR have shown low value of dispersion and relative 

variability (low CV value), which indicates better performance compared to ARC2 and GPCC 

(higher CV value). Lastly, the results of the bias ratio demonstrate a very slight overestimation of 

rainfall recorded by TAMSAT, PERSIANN-CDR, and GPCC, and slight underestimation of rainfall by 

ARC2 product. 

Table 4.1 BAS rainfall products performance tests 

 ARC2 PERSIANN-CDR TAMSAT GPCC 

Correlation (R) 0.64 0.69 0.79 0.22 

Bias Ratio (B) 0.95 1.08 1.03 1.04 

Coefficient of Determination (CV) % 2.57 1.07 0.86 2.24 

Root Mean Square Error (RMSE) mm 133.99 82.25 45.16 156.82 

 

4.2.3 Rainfall Trend 

In order to assess the general changes in rainfall over the 31 years of historical rainfall at Baro-

Akobo-Sobat, the rainfall trends were plotted using the data of the 5 different rainfall products as 

illustrated in Figure 4.4. By analyzing the plots, it can be noticed that all rainfall products except 
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GPCC have indicated increasing rainfall trend over the years between 1990 to 2020. By looking at 

the slope of the trendlines, CHIRPS, TAMSAT, and PERSIANN-CDR have agreed on the detection of 

the same direction and amount of rainfall change over the years, i.e., slow positive rainfall 

increase. However, ARC2 with its steeper trendline slope, captured a generally faster positive 

rainfall change over the years. Though, it can be observed that ARC2 detected decreasing rainfall 

during the middle years of study (2000-2009). In Contrast, GPCC demonstrated a fast-decreasing 

change of rainfall over the years 1990-2020. 

  

  

 
Figure 4.4 Rainfall trends - BAS 

4.2.4 Rainfall anomalies 

The rainfall anomalies of Baro-Akobo-Sobat illustrate the variation of rainfall compared to the 

climatology mean for the years 1990 -2020 (see Figure 4.5). Starting with CHIRPS, the year of 

greatest positive value was 2009, and the year of the lowest value was 2019 compared to the 

mean. The period from 1990 – 1993 represent the longest consecutive years of rainfall higher 

than the average, while the last years of 2017 – 2020 represent the longest continuous low rainfall 

period. With regards to ARC2, the lowest rainfall record compared to the mean was in 2020. The 

period from 1998 – 2012 represents the longest continuous period with high rainfall, while 2014 

– 2020 show lower rainfall than the mean. PERSIANN-CDR and TAMSAT recorded the highest 
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rainfall in 2010 and 2009 respectively, and the lowest rainfall record in 2012 and 2019 

respectively. For both satellites, the period with consecutive higher rainfall than average was in 

the middle of the study under consideration, while the longest continuous dry years were 

recorded in the last years. Lastly, GPCC showed different pattern, having continuous years of low 

rainfall between 1990 – 2001, and higher rainfall for the remaining period (2009 - 2019).  

To conclude, anomalies are showing approximately similar patterns but with different intensity, 

except ARC2 and GPCC. all rainfall products agreed on detecting lower rainfall than average during 

the last 5 years, except GPCC which showed the opposite. The number of the below-average years 

is 15, which means a frequency of 48%. 

  

  

 
Figure 4.5 Rainfall anomalies - BAS 

4.2.5 Standardized Precipitation Index (SPI) 

Looking at Figure 4.6 below, and considering table 3.1 of this report, the meteorological drought 

of Baro-Akobo-Sobat over the period 1990 – 2020 can be classified using the SPI value. CHIRPS, 

TAMSAT, and PERSIANN-CDR are showing approximately similar pattern, with the longest wet 
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period at the end of the study period (2015 – 2020), ranging between moderately to extremely 

wet, with one extremely dry year (2019) recorded by TAMSAT. The driest years are 2009 – 2011, 

and the most wet years are 2007 – 2008 and 2019 – 2020. On the other hand, ARC2 and GPCC 

showed different patterns. ARC2 demonstrated long moderately dry period between 2000 – 2010, 

followed by moderately to extremely wet years until the end of the study period. GPCC showed 

opposite results, with long near normal to extremely wet period in 1990 – 2002, and extremely 

to moderately dry period in 2009 – 2020.  

Generally, most of the satellites recorded the period between 2002 – 2007 as dry with different 

intensities (moderately to severely), and the last five years 2016 – 2020 as moderately to 

extremely wet.  

  

  

 
Figure 4.6 Standardized Precipitation Index (SPI) - BAS 

4.2.6 Rainfall frequency distribution 

In Baro-Akobo-Sobat, the rainfall captured by the different products during the years 1990-2020 

was found to follow different frequency distributions as shown in Figure 4.7. CHIRPS and TAMSAT 

followed the Log-logistic 3P and the Logistic distributions respectively, with symmetric shape, and 

the most common rainfall intensity (peak of the curves) aligning with the climatology mean (800 
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mm). The other datasets have shown more skewed distribution curves. ARC2 and GPCC presented 

negative skewness of curves following Log-Persons 3 and Frechet 3P distributions, with more 

frequency of the high rainfall intensities. Also, both of them underestimated the climatology 

mean. On the other hand, PERSIANN-CDR followed Johnson SB distribution with more frequency 

of the low rainfall values (positive skewness). All rainfall datasets have not shown long tails, 

indicating lower frequency of extreme events. 

  

  

 
Figure 4.7 Rainfall distribution - BAS 

4.2.7 Seasonality of rainfall 

In this section, the five rainfall products detection of the rainfall seasonality of Baro-Akobo-Sobat 

is compared. From Figure 4.8, it can be noticed that all datasets agreed on the continuation of 

rainfall in the subbasin from March up to November, with July and August having the highest 

monthly rainfall (around 160 mm). The main rainy season is from June to October. Agreement also 

noticed in the estimated amount of the monthly rainfall along the year between all products except 

ARC2 that demonstrated lower estimates especially during the peak season (June, July, August, 

September) with more than 40 mm less rainfall.  
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Figure 4.8 Monthly rainfall - BAS 

4.3 Blue Nile (BN) 

4.3.1 Box Plots 

Comparing the annual rainfall distribution and variability over the Blue Nile, Figure 4.9Error! 

Reference source not found. shows that CHIRPS followed by TAMSAT represent the best 

performance rainfall products with similar rainfall estimate (median) and low variability (low IQR). 

This means they are more reliable and consistent in estimating the annual rainfall. PERSIANN-CDR 

also showed low variability, but higher annual rainfall. The highest variability was observed by 

GPCC and ARC2 datasets. It can be noticed that this result is similar to BAS results. 

 

Figure 4.9 Box plots - BN 

4.3.2 Scatter Plots 

In the Blue Nile, CHIRPS has also been used as a reference to compare the performance of other 

rainfall datasets. Figure 4.10 below shows the scatter plots that assess how well ARC2, PERSIANN-

CDR, TAMSAT, and GPCC rainfall estimates match the CHIRPS data. TAMSAT demonstrated better 
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fit with CHIRPS having coefficient of determination (R2) = 0.6, followed by PERSIANN-CDR (R2 = 

0.54). However, these R2 values are not considered high. On the other hand, ARC2 and GPCC 

provided low fit with CHIRPS with R2 of 0.34 and 0.18 respectively. 

 
 

 

 
 

 
 

Figure 4.10 Scatter plots - BN 

From Table 4. 2 below, TAMSAT and PERSIANN-CDR represent a strong match with CHIRPS with 

the highest correlation (R) and the lowest RMSE. Relatively, ARC2 and GPCC recorded lower fit 

with CHIRPS. TAMSAT and PERSIANN-CDR have also shown low value of relative variability (low 

CV), which indicates better performance compared to ARC2 and GPCC (higher CV value). Lastly, 

the results of the bias ratio demonstrate good agreement of TAMSAT and PERSIANN-CDR with 
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CHIRPS, while showing overestimation and underestimation of rainfall recorded by GPCC and 

ARC2 respectively.  

Table 4. 2 BN rainfall products performance tests 

 ARC2 PERSIANN-CDR TAMSAT GPCC 

Correlation (R) 0.58 0.73 0.79 0.43 

Bias Ratio (B) 0.90 1.08 1.02 1.11 

Coefficient of Determination (CV) % 3.27 1.32 1.29 2.59 

Root Mean Square Error (RMSE) mm 206.7 110.8 60.6 216.1 

 

4.3.3 Rainfall Trend 

Rainfall trends for the years 1990 -2020 were also plotted for the Blue Nile considering the 5 

rainfall products. Looking at Figure 4.11, CHIRPS and TAMSAT have shown a similar rainfall trend 

with positive mild slope of trendlines which indicates slow increasing trend of rainfall. ARC2 also 

detected an increasing rainfall trend, but faster than the previous 2 satellites (it also shows 

decreasing rainfall in the middle years and rising rainfall afterwards). This result is similar to the 

previous subbasin (BAS). On the other hand, both PERSIANN-CDR and GPCC demonstrated 

decreasing rainfall over the 31 years. However, GPCC have shown faster negative change in rainfall 

compared to PERSIANN-CDR which have a minor decrease of rainfall detected from the almost 

flat rainfall trend. 
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Figure 4.11 Rainfall trends - BN 

4.3.4 Rainfall anomalies 

The Blue Nile is subjected to some differences in the results of the rainfall anomalies recorded by 

the different satellites (see Figure 4.12). For CHIRPS, the longest consecutive years with positive 

rainfall anomalies from 2001 to 2005, while the longest consecutive negative rainfall anomalies 

are from 1996 to 2000 as well as from 2016 to 2020, which shows the presence of no droughts 

and occurrence of droughts respectively. The greatest above-average rainfall anomaly occurred 

in 2002 and highest negative rainfall anomaly occurred in 2019. For ARC2, the longest positive 

consecutive rainfall anomalies occurred from 2000 to 2010 and the longest negative rainfall 

anomalies occurred from 2014 to 2020. The greatest below-average rainfall anomaly occurred in 

2020. Moreover, PERSIANN-CDR shows that longest period with above-average rainfall was 

between 2009 – 2013, while the longest consecutive years of below-average rainfall were 

recorded between 1996 and 2001. The years 2000 and 2009 received the lowest and the highest 

rainfall compared to average. TAMSAT have shown the longest consecutive positive rainfall 

anomalies from 1990 to 1995, followed by the longest consecutive negative rainfall anomaly 

occurred between 1996 to 2000. The greatest above-average rainfall occurred in 2009 and 

greatest below-average recorded in 2000, 2008 and 2020. Lastly for GPCC, the longest negative 

and positive consecutive rainfall anomalies were from 1993 to 2001 and 2009 to 2015 

respectively.   

In conclusion, all satellites recorded the highest rainfall in 2009. Also, all of them agreed on the 

longest consecutive years of low rainfall from 2001 – 2009, and from 2016 – 2020. However, GPCC 

showed higher rainfall than average during the last years opposite to the rest of products. The 

number of the below-average years ranges between 11 and 14 (frequency = 35% - 45%). 
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Figure 4.12 Rainfall anomalies - BN 

4.3.5 Standardized Precipitation Index (SPI) 

Looking at Figure 4.13 below, and considering table 3.1 of this report, the meteorological drought 

of the Blue Nile over the period 1990 – 2020 can be classified using the SPI values. All satellites 

showed similar pattern of SPI for the Blue Nile. The first 4 years can be classified as near normal 

to moderately dry. That is followed by a near normal to severely wet period until 1998. The 

longest dry period is from 1999 to 2013 (moderately dry), followed by a severely to extremely 

wet years up to 2020. The years 2005 and 2010 can be considered the driest years, while 2019 

and 2020 represent the wettest years over the study period. 
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Figure 4.13 Standardized Precipitation Index (SPI) - BN 

4.3.6 Rainfall frequency distribution 

In the Blue Nile, the different products also show significant differences regarding the frequency 

distribution of rainfall during the years 1990 – 2020 (see Figure 4.14). Looking at the most 

frequent rainfall value, CHIRPS and ARC2 underestimated the climatology mean (1000-1100 mm), 

and the other 3 products managed to detect it. CHIRPS, PERSIANN-CDR, and TAMSAT have shown 

a negative skewed distributions (more frequent of high values) following Weibul, Gen. Extreme 

Value and Gumbel distributions respectively. On the other hand, ARC2 followed the Gen. Extreme 

Value distribution with higher frequency for the lower rainfall values. Lastly, GPCC demonstrated 

a symmetric distribution (Log-Logistic). All rainfall datasets have not shown long tails, indicating 

lower frequency of extreme events. 
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Figure 4.14 Rainfall distribution - BN 

4.3.7 Seasonality of rainfall 

In the Blue Nile, also long rainy months are observed as shown in Figure 4.15 below. The different 

satellites agreed on recording similar performance of the monthly rainfall starting from low 

intensities in April (40 mm), increasing gradually until reaching the peaks during July and August 

(250 mm), and decreasing gradually again to lower rainfall in October and November. However, 

CHIRPS recorded slightly lower amounts of monthly rainfall, and ARC2 has shown the lowest 

estimates of peaks (50 mm less). 
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Figure 4.15 Monthly rainfall - BN 

4.4 Tekeze-Setit-Atbara 

4.4.1 Box Plots 

Regarding the annual rainfall distribution over the TSA subbasin (see Figure 4.16), also CHIRPS 

and TAMSAT showed the best performance and highest consistency. They demonstrated low 

variability, with similar central tendency (median) that indicates similar rainfall estimate. The 

variability of PERSIANN-CDR and GPCC are also not high, however, they estimated higher and 

lower rainfall respectively. ARC2 is considered unreliable as it showed high IQR (rainfall 

variability). 

 

Figure 4.16 Box plots - TSA 

4.4.2 Scatter Plots 

Figure 4.17 below show the scatter plots that assess how well ARC2, PERSIANN-CDR, TAMSAT, and 

GPCC rainfall estimates match the CHIRPS data at Tekeze-Setit-Atbara. TAMSAT demonstrated the 
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highest fit with CHIRPS having coefficient of determination (R2) = 0.73, followed by PERSIANN-

CDR (R2 = 0.64). ARC2 and GPCC provided low fit with CHIRPS with R2 of 0.3. 

 
 

 

 
 

 
 

Figure 4.17 Scatter plots - TSA 

Using the performance metrics in Table 4. 3 below, TAMSAT and PERSIANN-CDR represent the 

strongest correlation with CHIRPS (highest R and the lowest RMSE), indicating the best 

performance. On the other hand, ARC2 and GPCC were found to have weaker match with CHIRPS, 

thus, poor performance. TAMSAT and PERSIANN-CDR have also shown lower value of coefficient 

of variation (CV), which indicates better performance compared to ARC2 and GPCC (higher CV 

value).  
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Lastly, the results of the bias ratio demonstrate high agreement of TAMSAT and CHIRPS, and slight 

overestimation of rainfall recorded by PERSIANN-CDR. In contrast, GPCC and ARC2 were found to 

underestimate the rainfall amounts. 

Table 4. 3 TSA rainfall products performance tests 

 ARC2 PERSIANN-CDR TAMSAT GPCC 

Correlation (R) 0.57 0.80 0.85 0.56 

Bias Ratio (B) 0.98 1.13 1.01 0.83 

Coefficient of Determination (CV) % 2.85 1.33 1.14 2.06 

Root Mean Square Error (RMSE) mm 139.5 84.7 35.9 121 

 

4.4.3 Rainfall Trend 

Historical rainfall data of Tekeze-Setit-Atbara subbasin shows uncertainty in detecting the rainfall 

trends over the years 1990 – 2020 in terms of direction and rate of change. Looking at Figure 4.18, 

it can be noticed that both CHIRPS and TAMSAT presented positive change of rainfall over the 

years, with slightly faster increase observed by TAMSAT. On the other hand, ARC2 detected a rapid 

increase of rainfall between 1990 – 2020 (steeper positive slope of trendline). In contrast, GPCC 

recorded a decreasing rainfall change over the years. Lastly, PERSIANN-CDR has shown almost a 

flat rainfall trend which indicates minor or no change of rainfall. 
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Figure 4.18 Rainfall trends - TSA 

4.4.4 Rainfall anomalies 

Figure 4.19 illustrates the rainfall anomalies of Tekeze-Setit-Atbara. CHIRPS shows that the 

maximum positive rainfall compared to average occurred in 1990 and the maximum negative 

rainfall compared to average occurred in 1999. It also recorded consecutive above-average rainfall 

years between 1990 – 1995, followed by below average rainfall between 1996 – 2001, and 2017 -

2020.  For ARC2, the greatest positive and negative rainfall anomalies occurred in 1992 and 2020 

respectively. The longest consecutive years of above-average rainfall were from 2000 -2005 and 

1993 – 1999, while the longest below-average years of rainfall were from 2014 to 2020. For 

PERSIAN CDR the longest negative consecutive rainfall anomalies occurred from 1992 to 2001, 

and the longest positive consecutive rainfall anomalies occurred from 2008 to 2013. The greatest 

below-average and above-average rainfall were recorded in 1999 and 2019, which indicates the 

extreme events occurrence. For TAMSAT, the maximum positive rainfall anomaly occurred in 

1990 and the maximum negative rainfall anomaly was recorded in 2000. This satellite shows 

continuous above-average rainfall between 1990 and 1995, followed by below-average rainfall 

from 1996 to 2000. GPCC shows different pattern during the last years indicating continuous 

positive anomalies between 2007 and 2019, with dry years between 1992 and 1999. The driest 

year was 1999. 

To summarize, CHIRPS, PERSIANN, and TAMSAT are showing similar pattern of anomalies 

approximately. All rainfall products agreed on detecting long below-average rainfall period 

between 1994 – 2001, with above-average rainfall between 1990 and 1993. Also, all products 

except GPCC recorded low rainfall during the last 4 years. The number of the below-average 

years is 15 – 18 (frequency = 45% - 58%). 
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Figure 4.19 Rainfall anomalies - TSA 

4.4.5 Standardized Precipitation Index (SPI) 

Looking at Figure 4.13 below, and considering table 3.1 of this report, the meteorological drought 

of Tekeze-Setit-Atbara over the period 1990 – 2020 can be classified using the SPI values. Tekeze-

Setit- Atbara demonstrated similar SPI pattern to Blue Nile. The first 4 years can be classified as 

near normal to moderately dry, followed by near normal to severely wet period until 1998. The 

longest dry period is from 1999 to 2013 (moderately dry), followed by a severely to extremely 

wet years up to 2020. The years 2005 and 2010 are the driest years, while 2019 and 2020 

represent the wettest years. 
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Figure 4.20 Standardized precipitation Index (SPI) - TSA 

4.4.6 Rainfall frequency distribution 

Regarding the rainfall frequency distribution in Tekeze-Setit-Atbara, also some differences can be 

observed. The most frequent rainfall recorded by CHIRPS and TAMSAT aligns with the climatology 

mean of the basin, following Hypersecant and the Gen. Extreme Value distributions respectively. 

Both satellites show a negative skewed distribution curves that indicates greater frequency for 

the high rainfall amounts. On the other hand, ARC2, PERSIANN-CDR, and GPCC could not detect 

the climatology mean accurately, following the Gen. Gamma, Gumbel Min, and Burr frequency 

distributions respectively. PERSIANN-CDR demonstrated higher frequency for the high rainfall, 

while GPCC showed the opposite, and ARC2 tended to distribute more symmetrically.  All rainfall 

datasets have not shown long tails, indicating lower frequency of extreme events. 
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Figure 4.21 Rainfall distribution - TSA 

 

4.4.7 Seasonality of rainfall 

The performance of the monthly rainfall of Tekeze-Setit-Atbara is approximately similar to Baro-

Akobo-Sobat (see Figure 4.22). Rainfall starts from late March or beginning of April with low 

amounts (20 mm), increases gradually until it reaches the peak during July and August (190 mm), 

and decreasing again until October. The different rainfall products have shown matching results 

in capturing the seasonality, however, differences in the monthly rainfall were observed. GPCC 

demonstrated the lowest monthly rainfall records along the year. 
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Figure 4.22 Monthly rainfall - TSA 

4.5 Upper Main Nile 

4.5.1 Box Plots 

Looking at Figure 4.23, similar to the previous subbasins, CHIRPS and TAMSAT have shown the 

highest consistency and reliability in estimating annual rainfall over the Upper Main Nile. Their 

good performance is proved by their low variability (IQR). GPCC also show low spreading with 

lower rainfall estimate (median). It also showed few outliers among the data. Lastly, ARC2 and 

PERSIANN-CDR demonstrated relatively higher variability with few number of outliers. 

 

Figure 4.23 Box plots of Upper Main Nile subbasin 

4.5.2 Scatter Plots 

From Figure 4.24 below that shows the scatter plots of the Upper Main Nile, similar result to the 

previous subbasins can be observed, showing that TAMSAT and PERSIANN-CDR represent the 

rainfall products with the highest fit with CHIRPS having coefficient of determination (R2) of > 0.8. 

ARC2 and GPCC also provided low fit with CHIRPS with R2 of 0.1 and 0.3 respectively. 
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Figure 4.24 Scatter plots of UMN subbasin 

By using the performance metrics in Table 4. 4 below and looking at correlation (R) and RMSE, 

TAMSAT and PERSIANN-CDR were found to have the strongest correlation with CHIRPS, 

representing the best performance. Conversely, ARC2 and GPCC have weaker correlation with 

CHIRPS and higher RMSE, thus, poor performance. TAMSAT and PERSIANN-CDR have also shown 

lower relative variability (low CV), which demonstrates better performance compared to ARC2 

and GPCC (higher CV). The bias ratio (B) indicates high overestimation of rainfall recorded by 

ARC2, and low overestimation by TAMSAT and PERSIANN-CDR. In contrast, GPCC was found to 

underestimate the rainfall amounts. 
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Table 4. 4 UMN rainfall products performance tests 

 ARC2 PERSIANN-CDR TAMSAT GPCC 

Correlation (R) 0.37 0.90 0.92 0.57 

Bias Ratio (B) 1.48 1.14 1.22 0.86 

Coefficient of Determination (CV) % 3.09 1.39 0.93 1.72 

Root Mean Square Error (RMSE) mm 73.3 15 14 21 

 

4.5.3 Rainfall Trend 

The rainfall trend plots of the Upper Main Nile indicate low change in rainfall over the years 1990-

2020 as illustrated in Figure 4.25 below. CHIRPS, TAMSAT, and PERSIANN-CDR recorded an 

increasing trend of rainfall, with faster change observed by the later. On the other hand, GPCC 

indicated decreasing rainfall, and ARC2 demonstrated almost no change in rainfall.  

  

  

 
Figure 4.25 Rainfall trends - UMN 
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4.5.4 Rainfall anomalies 

Figure 4.26 illustrates the rainfall anomalies of the Upper Main Nile. It can be noticed that CHIRPS, 

PERSIANN-CDR, and TAMSAT have shown similar pattern. They detected the longest period of 

above-average years between 1990 – 1994, 2000 – 2007, and 1990 – 2005 respectively. Moreover, 

they agreed on recording similar consecutive below-average years between 2019 – 2020. CHIRPS 

and PERSIANN-CDR recorded the lowest value of rainfall in 2007, while TAMSAT recorded 2014 as 

the driest year compared to average. 1990 show high rainfall value for the 3 satellites. Coming to 

ARC2, it shows a very low rainfall in the year 1992, and long consecutive period of above-average 

rainfall between 2000 and 2015. On the other hand, GPCC performed in a different way, showing 

long period of below-average rainfall between 1992 to 1999, with 2014 having the lowest value, 

and long period of above-average rainfall from 2008 – 2020. Generally, the number of below-

average years is 11 – 14, with frequency of 35% - 45%. 

  

  

 
Figure 4.26 Rainfall anomalies - UMN 
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4.5.5 Standardized Precipitation Index (SPI) 

Figure 4.13 show the SPI plots of the Upper Main Nile, that can be used with table 3.1 of this 

report to classify the meteorological drought over the period 1990 – 2020. In the Upper Main 

Nile, all satellites generally showed similar pattern of SPI, with few variations recorded by CHIRPS. 

It can be noticed that the longest dry period is between 1998 to 2012, which can be classified as 

near normal to moderately dry. That is followed by the longest wet period between 2014 to 2020, 

ranging from moderately to extremely wet. The years 2005 and 2020 can be considered the driest 

and wettest years respectively. 

  

  

 
Figure 4.27 Standardized Precipitation Index (SPI) - UMN 

4.5.6 Rainfall frequency distribution 

Uncertainty can be observed with regards to the rainfall frequency distribution in the Upper Main 

Nile subbasin. ARC2, PERSIANN-CDR, and GPCC follow a positive skewed curves with higher 

frequency of the low rainfall intensities, following Rayleigh, Inv. Gaussian, and Weibull 

distributions respectively. CHIRPS followed Beta distribution with symmetric curve, and TAMSAT 
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followed the Log-Persons 3 distribution with negative skewness (high frequency the high rainfall 

intensities). All rainfall products showed most common rainfall values that align with the 

climatology mean, except TAMSAT, which overestimated it. 

  

  

 
Figure 4.28 Rainfall distribution - UMN 

4.5.7 Seasonality of rainfall 

Figure 4.29 shows the monthly rainfall of the Upper Main Nile. Generally, the subbasin receives 

low amounts of rainfall (max is 30 mm), and this may cause uncertainty in estimating the monthly 

records. As a result, there are differences in the amount of the monthly rainfall captured by the 

different satellites during the rainy months of July and August (ranges between 15 to 30 mm). In 

this subbasin, the GPCC recorded the lowest estimate of the monthly rainfall. 
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Figure 4.29 Monthly rainfall - UMN 

4.6 Lower Main Nile 

4.6.1 Box Plots 

The Lower Main Nile presented high uncertainty in the annual rainfall distribution as shown in 

Figure 4.30. The small IQR of CHIRPS and GPCC indicates that they are the best performing 

satellites showing low variability, and similar rainfall estimates. The remaining 3 datasets (ARC2, 

PERSIANN-CDR, and TAMSAT) have shown high spreading of the data. This means they are 

uncertain and less reliable in estimating annual rainfall. 

 

Figure 4.30 Box plots - LMN 

4.6.2 Scatter Plots 

From Figure 4.31 below that shows the scatter plots of the Lower Main Nile, all datasets have 

shown poor match with CHIRPS rainfall data. 
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Figure 4.31 Scatter plots - LMN 

However, by using the performance metrics in Table 4. 5, values of the correlation (R) and RMSE 

of TAMSAT and PERSIANN-CDR indicate stronger correlation with CHIRPS, representing the best 

performance satellites. On the other hand, GPCC followed by ARC2 show weaker correlation with 

CHIRPS and higher RMSE, thus, poor performance. ARC2 was found to have the highest relative 

variability compared to the other products. The bias ratio (B) indicates overestimation of rainfall 

recorded by ARC2, PERSIANN-CDR, and TAMSAT, and underestimation of rainfall observed by 

GPCC.  
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Table 4. 5 LMN rainfall products performance tests 

 ARC2 PERSIANN-CDR TAMSAT GPCC 

Correlation (R) 0.37 0.90 0.92 0.57 

Bias Ratio (B) 1.48 1.14 1.22 0.86 

Coefficient of Determination (CV) % 3.09 1.39 0.93 1.72 

Root Mean Square Error (RMSE) mm 73.3 15 14 21 

 

4.6.3 Rainfall Trend 

Looking at Figure 4.32, the Lower Main Nile can be categorized by no change or a slightly 

increasing rainfall over the 31 years under consideration. CHIRPS and GPCC agreed on detecting 

flat trend, which means no change of rainfall amounts, while ARC2, PERSIANN-CDR, and TAMSAT 

recorded a slow increase in rainfall between 1990-2020. 

  

  

 
Figure 4.32 Rainfall trends – LMN 

4.6.4 Rainfall anomalies  

Regarding the rainfall anomalies of the Lower Main Nile (see Figure 4.33), All satellites agreed 

on capturing consecutive years of below-average rainfall during the last 5 years, except TAMSAT 
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that recorded high rainfall compared to average in 2020. For CHIRPS, the longest consecutive 

above and below-average rainfall periods were 2005 – 2011, and 2016 – 2020 respectively, with 

2016 as the driest year. ARC2 shows dry years from 1991 to 1996, followed by equal or above-

average period between 1997 – 2012, and another dry period compared to average between 

2016 and 2020, with 2020 as the driest year relatively. The longest above-average rainfall period 

detected by PERSIANN-CDR was from 2001 – 2009, followed by drier continuous years in 2010 – 

2020. TAMSAT showed variation in the pattern with the longest wetter period 1999 – 2003, and 

the longest drier years in 2014 to 2019. Lastly, the anomalies of GPCC recorded a long above-

average rainfall period between 1998 – 2012, and 2020 recorded the greatest below-average 

rainfall year.  All satellites show dry period compared to average during the last 3 to 6 years. The 

number of below-average  years ranges between 9 to 16, , with frequency of below-average 

years= 29% - 51% (high uncertainty). 

  

  

 
Figure 4.33 Rainfall anomalies - LMN 
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4.6.5 Standardized Precipitation Index (SPI) 

Figure 4.34 show the SPI plots of the Lower Main Nile, that can be used with table 3.1 of this 

report to classify the meteorological drought over the period 1990 – 2020. CHIRPS, TAMSAT, and 

GPCC recorded the same pattern of SPI, with the longest wet period from 2013 to 2020 

(moderately to extremely wet). It can be noticed that 2010 and 2020 are the driest and wettest 

years respectively. On the other hand, ARC2 and PERSIANN-CDR showed similar SPI to each other, 

with the longest near normal to moderately dry period from 1998 to 2012, followed by the 

longest moderately to extremely wet period from 2013 to 2020. 

  

  

 

 
Figure 4.34 Standardized Precipitation Index (SPI) - LMN 

4.6.6 Rainfall frequency distribution 

In the Lower Main Nile subbasin, CHIRPS, ARC2, PERSIANN-CDR, and GPCC have shown higher 

frequency for the low rainfall values (positive skewness), following the Pert, Logistic, Burr 4P, and 

Rice frequency distributions respectively. On the other hand, TAMSAT demonstrated higher 
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frequency for the high rainfall values following Pert distribution with negative skewness. Only 

CHIRPS and GPCC managed to align with the climatology mean of rainfall (peak of curves or most 

frequent rainfall). The other 3 products overestimated rainfall. 

  

  

 
Figure 4.35 Rainfall distribution - LMN 

4.6.7 Seasonality of rainfall 

The different rainfall products failed in detecting the seasonality of rainfall in the Lower Main Nile 

(see Figure 4.36), and that can be attributed to the very low values of rainfall that the subbasin 

receives. Although the subbasin is generally dry almost all of the year, some of the northern parts 

receive rain during January and February, and high uncertainty can be noticed in the satellites’ 

estimations. 
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Figure 4.36 Monthly rainfall - LMN 
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5 Conclusion 
Historical rainfall data for the Eastern Nile Basin with its four subbasins; Blue Nile, Baro-Akobo-

Sobat, Tekeze-Setit-Atbara, and the Main Nile, was analyzed to understand the rainfall trends in 

the region, which plays a major role in water resources management and development. The years 

1990 – 2020 were considered for analyzing the rainfall patterns and distribution. Due to the 

limitation on the availability and the uncertainty in the ground observation data, rainfall data was 

acquired from 5 open-source rainfall satellite products; namely, CHIRPS, ARC2, PERSIANN-CDR, 

TAMSAT, and GPCC. The selection of the five datasets among the available products was based on 

literature review according to their performance, the spatial and temporal resolution, the spatial 

coverage, and the data record length. Data quality check and correction was performed for the 

downloaded data before the analysis.  

On the analysis, CHIRPS was taken as a reference for comparison as it showed the best 

performance compared to ground observations over East Africa according to literature and 

applications. This can be attributed to the fact that CHIRPS is blended and correlated with station 

data to improve its quality.  Different statistical and spatial techniques were conducted to analyze 

the historical rainfall data. Those techniques included producing the spatial distribution maps for 

the whole Eastern Nile Basin to understand the spatio-temporal distribution of rainfall, and have 

initial insights about the trends and changes taking into consideration the observations of the 

different rainfall products. The basin was found to receive amounts of annual rainfall ranging 

between 0 mm rainfall at the northern part of the basin (north Sudan and Egypt) to around 1500 

mm at the south-eastern area of the basin (the highlands of Ethiopia and parts of South Sudan). 

Blue Nile and Baro-Akobo-Sobat received the highest rainfall intensity (700 mm to 1500 mm and 

400 mm to 1400 mm respectively), followed by Tekeze-Setit-Atbara (200 mm to 1200 mm), with 

low to very low rainfall at the Upper and Lower Main Nile (0 mm to 250 mm). Differences were 

observed when comparing the spatial distribution maps of the 5 products considering 10-year 

average of rainfall. From 1990 – 2010, GPCC and PERSIANN-CDR demonstrated higher annual 

rainfall intensity compared to the other 3 satellite products, while in 2011 – 2020, CHIRPS and 

TAMSAT showed the highest estimation. ARC2 presented the lowest estimation for the study 

period. This can be attributed to the spatial resolution of the rainfall products, the algorithms 

used and the assumptions considered for each satellite dataset.  

In Baro-Akobo-Sobat, the rainfall products were found to follow different distributions. CHIRPS 

and TAMSAT showed the best performance and highest consistency among the datasets, and 

ARC2 was found to have the worst performance. Considering the statistical metrics, TAMSAT has 

shown the strongest correlation and match to CHIRPS. All rainfall products have indicated 

increasing rainfall trend over the years between 1990 to 2020, with different rate of change, 

except GPCC that showed a fast-decreasing trend. Generally, most of the satellites recorded the 
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period between 2002 – 2007 as dry with different intensities (moderately to severely), and the 

last five years 2016 – 2020 as moderately to extremely wet, considering the SPI.  

The rainfall data of the 5 products in the Blue Nile also followed different distributions. Similar 

results to Baro-Akobo-Sobat were observed in the Blue Nile, as CHIRPS followed by TAMSAT also 

represent the best performance datasets. However, GPCC recorded the lowest performance. 

Satellites have shown uncertainty in observing the rainfall trend. PERSIANN-CDR and GPCC 

observed decreasing trend of rainfall, in contrast to CHIRPS, TAMSAT. Moreover, SPI shows that 

the longest dry period is from 1999 to 2013 (moderately dry), followed by the longest severely to 

extremely wet years up to 2020. 

In Tekeze-Setit-Atbara subbasin, the rainfall distribution of satellites show that they performed 

similar to the previous subbasins, having CHIRPS and TAMSAT as the best performance and 

highest consistency products, and ARC2 as the lowest. However, the statistical metrics show that 

PERSIANN-CDR performed better than TAMSAT compared to CHIRPS. About the trend, 3 out of 

the 5 products show rising rainfall trend (CHIRPS, TAMSAT, and ARC2), opposite to PERSIANN-CDR 

and GPCC. Additionally, similar to Blue Nile, SPI shows that the longest dry period is from 1999 to 

2013 (moderately dry), followed by the longest severely to extremely wet years up to 2020. 

Over the Upper Main Nile, there is uncertainty in evaluating the performance of the satellites. 

CHIRPS followed by TAMSAT and GPCC can be considered as the best performing satellites 

considering the rainfall distribution. However, by looking at the statistical metrics, PERSIANN-CDR 

performed better than GPCC. In both cases, ARC2 did not perform well. Three out of the satellites 

recorded an increasing trend of rainfall with different rates. Furthermore, according to SPI, the 

longest dry period is between 1998 to 2012 (near normal to moderately dry), followed by the 

longest wet period between 2014 to 2020 (moderately to extremely wet).  

Lastly, the Lower Main Nile presented high variability in the annual rainfall distribution of the 5 

rainfall products. CHIRPS and GPCC were found to be the best performing products considering 

their distribution.  Nevertheless, the statistical metrics have shown uncertainties in evaluating the 

best performing satellite, but generally ranking the GPCC performance to be the third. This high 

uncertainty in the Lower Main Nile can be attributed to the zero to very low rainfall amounts that 

it receives, which makes it difficult for the satellites and algorithms to detect and develop accurate 

estimations. This subbasin can be considered to have no change or a slightly increasing rainfall 

over the 31 years according to the satellites’ records. According to SPI, the longest wet period 

was recorded from 2013 to 2020 (moderately to extremely wet), while the longest dry period was 

found to be between 1998 – 2011 (near normal to moderately dry).  

In conclusion, generally CHIRPS and TAMSAT can be classified as the best performing satellite 

rainfall datasets over the Blue Nile, Baro-Akobo-Sobat, Tekeze-Setit-Atbara, and the Upper Main 

Nile. For the Lower Main Nile, there is uncertainty in ranking the performance of the satellites, 
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but CHIRPS and GPCC can be considered the best. Focusing on the results of the best performing 

satellites, the study has demonstrated that the Eastern Nile Basin have shown an increasing 

rainfall trend with different rates over the period 1990 – 2020. Satellite agreed on recording the 

period 2000 - 2010 as the longest dry period, and the period 2015 – 2020 as the longest wet 

period according to SPI.  

The results of this study provide important inputs for all water resources management related 

sectors, and can be used by the different stakeholders, and policy makers for research, as well as 

for to informing decision-making process. 
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6 Recommendations 
The following points are recommended as continuation for this study: 

− Expand the analysis to focus on smaller regions to understand the localized variations in 

rainfall patterns and trends, considering factors such as topography, land use, and climate 

variability. 

− Further work is recommended for assessing the performance of GPCC to understand the 

uncertainty of its observations. 

− Conduct further research to assess the impacts of changing rainfall patterns on various 

sectors, such as agriculture, water resources, environment, and socio-economic 

conditions, to inform adaptation strategies. 

− Explore the attribution of the observed changes in historical rainfall trends to natural 

variability versus human-induced climate change, using advanced statistical methods and 

climate models. 

− Encourage collaboration and data sharing among researchers, meteorological agencies, 

and policymakers within the ENB to enhance the availability and accessibility of rainfall 

data for research and decision-making purposes. 
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